On total nonnorming subspaces
Authors:
William J. Davis and Joram Lindenstrauss
Journal:
Proc. Amer. Math. Soc. 31 (1972), 109-111
DOI:
https://doi.org/10.1090/S0002-9939-1972-0288560-8
MathSciNet review:
0288560
Full-text PDF
Abstract | References | Additional Information
Abstract: A Banach space has a total nonnorming subspace in its dual if and only if
has infinite codimension in its second dual.
- [1] P. Civin and B. Yood, Quasi-reflexive spaces, Proc. Amer. Math. Soc. 8 (1957), 906-911. MR 19, 756. MR 0090020 (19:756a)
- [2] J. Dixmier, Sur un théorème de Banach, Duke Math. J. 15 (1948), 1057-1071. MR 10, 306. MR 0027440 (10:306g)
- [3] V. I. Gurariĭ and M. I. Kadec, Minimal systems and quasi-complements in Banach space, Dokl. Akad. Nauk SSSR 145 (1962), 256-258 = Soviet Math. Dokl. 3 (1962), 966-968. MR 26 #6728. MR 0149238 (26:6728)
- [4] Ju. I. Petunin, Conjugate Banach spaces containing subspaces of zero characteristic, Dokl. Akad. Nauk SSSR 154 (1964), 527-529 = Soviet Math. Dokl. 5 (1964), 131-133. MR 28 #2425. MR 0159208 (28:2425)
- [5] A. A. Pełczyński, A note on the paper of I. Singer ``Basic sequences and reflexivity of Banach spaces", Studia Math. 21 (1961/62), 371-374. MR 26 #4156. MR 0146636 (26:4156)
- [6] I. Singer, Basic sequences and reflexivity of Banach spaces, Studia Math. 21 (1961/ 62), 351-369. MR 26 #4155. MR 0146635 (26:4155)
- [7] -, On bases in quasi-reflexive Banach spaces, Rev. Math. Pures Appl. (Bucarest) 8 (1963), 309-311. MR 31 #2599. MR 0178341 (31:2599)
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1972-0288560-8
Keywords:
Norming,
quasi-reflexive space,
dual space,
conjugate space
Article copyright:
© Copyright 1972
American Mathematical Society