Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A new $ \ell \sb{1}$ estimate and a problem of Katznelson


Author: D. J. Newman
Journal: Proc. Amer. Math. Soc. 31 (1972), 225-227
MSC: Primary 42A16
DOI: https://doi.org/10.1090/S0002-9939-1972-0296588-7
MathSciNet review: 0296588
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We produce a new estimate on the $ {l_1}$ norm in terms of the closeness of approximation by functions with small derivatives. We thereby solve a problem of Katznelson and give new proofs of some old $ {l_1}$ estimates.


References [Enhancements On Off] (What's this?)

  • [1] S. Agmon, Lectures on elliptic boundary value problems, Van Nostrand Math. Studies, no. 2, Van Nostrand, Princeton, N.J., 1965. MR 31 #2504. MR 0178246 (31:2504)
  • [2] L. Bers, F. John and M. Schechter, Partial differential equations, Lectures in Appl. Math., vol. 3, Interscience, New York, 1964. MR 29 #346. MR 598466 (82c:35001)
  • [3] D. G. de Figueiredo, The coerciveness problem for forms over vector valued functions, Comm. Pure Appl. Math. 16 (1963), 63-94. MR 26 #6578. MR 0149082 (26:6578)
  • [4] L. Gårding, Dirichlet's problem for linear elliptic partial differential equations, Math. Scand. 1 (1953), 55-72. MR 16, 366.
  • [5] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Masson, Paris; Academia, Prague, 1967. MR 37 #3168.
  • [6] J. M. Newman, Coercive inequalities for sectors in the plane, Comm. Pure Appl. Math. 22 (1969), 825-838. MR 0268505 (42:3402)
  • [7] M. Schechter, Coerciveness of linear partial differential operators for functions satisfying zero Dirichlet-type boundary data, Comm. Pure Appl. Math. 11 (1958), 153-174. MR 24 #A2747. MR 0132911 (24:A2747)
  • [8] K. T. Smith, Inequalities for formally positive integro-differential forms, Bull. Amer. Math. Soc. 67 (1961), 368-370. MR 26 #462. MR 0142895 (26:462)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42A16

Retrieve articles in all journals with MSC: 42A16


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0296588-7
Keywords: $ {l_1}$ norms, functional analysis fourier series
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society