On the extremal solutions of th-order linear differential equations

Author:
W. J. Kim

Journal:
Proc. Amer. Math. Soc. **33** (1972), 62-68

MSC:
Primary 34C10

MathSciNet review:
0294780

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Distribution of zeros of extremal solutions of linear *n*th-order differential equations is discussed. Existence and nonexistence of extremal solutions with certain zero distributions are established. For instance, it is proved that every extremal solution for of the equation has a zero of order 2 at and has no more than zeros on .

**[1]**R. G. Aliev,*On certain properties of solutions of ordinary differential equations of fourth order*, Sb. Aspirantsh. Kazan Institute**1964**, 15-30. (Russian)**[2]**N. V. Azbelev and Z. B. Calyuk,*On the question of the distribution of the zeros of solutions of a third-order linear differential equation*, Mat. Sb. (N.S.)**51 (93)**(1960), 475–486 (Russian). MR**0121529****[3]**John H. Barrett,*Third-order differential equations with nonnegative coefficients*, J. Math. Anal. Appl.**24**(1968), 212–224. MR**0232039****[4]**John H. Barrett,*Oscillation theory of ordinary linear differential equations*, Advances in Math.**3**(1969), 415–509. MR**0257462****[5]**Philip Hartman,*Unrestricted 𝑛-parameter families*, Rend. Circ. Mat. Palermo (2)**7**(1958), 123–142. MR**0105470****[6]**W. J. Kim,*Oscillatory properties of linear third-order differential equations.*, Proc. Amer. Math. Soc.**26**(1970), 286–293. MR**0264162**, 10.1090/S0002-9939-1970-0264162-2**[7]**W. J. Kim,*Simple zeros of solutions of 𝑛𝑡ℎ-order linear differential equations*, Proc. Amer. Math. Soc.**28**(1971), 557–561. MR**0274861**, 10.1090/S0002-9939-1971-0274861-5**[8]**Walter Leighton and Zeev Nehari,*On the oscillation of solutions of self-adjoint linear differential equations of the fourth order*, Trans. Amer. Math. Soc.**89**(1958), 325–377. MR**0102639**, 10.1090/S0002-9947-1958-0102639-X**[9]**A. Ju. Levin,*The non-oscillation of solutions of the equation 𝑥⁽ⁿ⁾+𝑝₁(𝑡)𝑥⁽ⁿ⁻¹⁾+\cdots+𝑝_{𝑛}(𝑡)𝑥=0*, Uspehi Mat. Nauk**24**(1969), no. 2 (146), 43–96 (Russian). MR**0254328****[10]**Zdzisław Opial,*On a theorem of O. Aramă*, J. Differential Equations**3**(1967), 88–91. MR**0206375****[11]**A. C. Peterson,*Distribution of zeros of solutions of a fourth order differential equation*, Pacific J. Math.**30**(1969), 751–764. MR**0252758****[12]**A. C. Peterson,*A theorem of Aliev*, Proc. Amer. Math. Soc.**23**(1969), 364–366. MR**0249720**, 10.1090/S0002-9939-1969-0249720-5**[13]**Vratislav Pudei,*Über die Eigenschaften der Lösungen linearer Differentialgleichungen gerader Ordnung*, Casopis Pěst. Mat.**94**(1969), 401–425 (German). MR**0273112****[14]**Thomas L. Sherman,*Properties of solutions of 𝑛𝑡ℎ order linear differential equations*, Pacific J. Math.**15**(1965), 1045–1060. MR**0185185****[15]**Thomas L. Sherman,*Conjugate points and simple zeros for ordinary linear differential equations*, Trans. Amer. Math. Soc.**146**(1969), 397–411. MR**0255912**, 10.1090/S0002-9947-1969-0255912-6

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34C10

Retrieve articles in all journals with MSC: 34C10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1972-0294780-9

Keywords:
*n*th-order linear equations with real-valued continuous coefficients,
zero distribution of extremal solutions,
existence and nonexistence

Article copyright:
© Copyright 1972
American Mathematical Society