Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A necessary and sufficient condition for $ \beta X\backslash X$ to be an indecomposable continuum


Author: R. F. Dickman
Journal: Proc. Amer. Math. Soc. 33 (1972), 191-194
MSC: Primary 54D35
DOI: https://doi.org/10.1090/S0002-9939-1972-0295296-6
MathSciNet review: 0295296
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In his dissertation, David Bellamy has shown that if $ I = [0,1)$, then $ \beta I\backslash I$ is an indecomposable continuum, and R. G. Woods, in his dissertation, obtained the same result and in addition showed that for $ m > 1,\beta {R^m}\backslash {R^m}$ is a decomposable continuum. In this note we give a necessary and sufficient condition for $ \beta X\backslash X$ to be an indecomposable continuum when X is a locally connected generalized continuum.


References [Enhancements On Off] (What's this?)

  • [1] David Bellamy, Topological properties of compactifications of a half-open interval, Ph.D. Thesis, Michigan State University, East Lansing, Mich., 1968.
  • [2] R. F. Dickman, Jr., Unicoherence and related properties, Duke Math. J. 34 (1967), 343-351. MR 35 #A3632. MR 0212767 (35:3632)
  • [3] -, Compactness of mappings on products of locally connected generalized continua, Proc. Amer. Math. Soc. 18 (1967), 1093-1094. MR 36 #853. MR 0217764 (36:853)
  • [4] M. H. Stone, On the compactification of topological spaces, Ann. Soc. Polon. Math. 21 (1948), 153-160. MR 10, 137. MR 0026316 (10:137b)
  • [5] R. G. Woods, Certain properties of $ \beta X\backslash X$ for $ \sigma $-compact X, Ph.D. Thesis, McGill University, 1968.
  • [6] L. Gillman and M. Jerison, Rings of continuous functions, The University Series in Higher Math., Van Nostrand, Princeton, N.J., 1960. MR 22 #6994. MR 0116199 (22:6994)
  • [7] J. G. Hocking and G. S. Young, Topology, Addison-Wesley, Reading, Mass., 1961. MR 23 #A2857. MR 0125557 (23:A2857)
  • [8] G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, R.I., 1942. MR 4, 86. MR 0007095 (4:86b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54D35

Retrieve articles in all journals with MSC: 54D35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0295296-6
Keywords: Stone-Čech compactification, indecomposable continuum
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society