Rings whose quasi-injective modules are injective

Author:
K. A. Byrd

Journal:
Proc. Amer. Math. Soc. **33** (1972), 235-240

MSC:
Primary 16A52

MathSciNet review:
0310009

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A ring *R* is called a V-ring, respectively SSI-ring, respectively QII-ring if simple, respectively semisimple, respectively quasi-injective, right *R*-modules are injective. We show that *R* is SSI if and only if *R* is a right noetherian V-ring and that any SSI-ring is a finite ring direct sum of simple SSI-rings. We show that if *R* is left noetherian and SSI then *R* is QII provided *R* is hereditary and that in order for *R* to be hereditary it suffices that maximal right ideals of *R* be reflexive. An example of Cozzens is cited to show these rings need not be artinian.

**[1]**Hyman Bass,*Finitistic dimension and a homological generalization of semi-primary rings*, Trans. Amer. Math. Soc.**95**(1960), 466–488. MR**0157984**, 10.1090/S0002-9947-1960-0157984-8**[2]**K. A. Byrd,*When are quasi-injectives injective?*, Canad. Math. Bull.**15**(1972), 599–600. MR**0311715****[3]**John H. Cozzens,*Homological properties of the ring of differential polynomials*, Bull. Amer. Math. Soc.**76**(1970), 75–79. MR**0258886**, 10.1090/S0002-9904-1970-12370-9**[4]**A. W. Goldie,*Semi-prime rings with maximum condition*, Proc. London Math. Soc. (3)**10**(1960), 201–220. MR**0111766****[5]**R. P. Kurshan,*Rings whose cyclic modules have finitely generated socle*, J. Algebra**15**(1970), 376–386. MR**0260780****[6]**Eben Matlis,*Injective modules over Noetherian rings*, Pacific J. Math.**8**(1958), 511–528. MR**0099360****[7]**D. B. Webber,*Ideals and modules of simple Noetherian hereditary rings*, J. Algebra**16**(1970), 239–242. MR**0265395**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
16A52

Retrieve articles in all journals with MSC: 16A52

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1972-0310009-7

Keywords:
Quasi-injective module,
V-ring,
Morita-equivalent,
quotient ring

Article copyright:
© Copyright 1972
American Mathematical Society