Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the relative group cohomology ring

Author: G. R. Chapman
Journal: Proc. Amer. Math. Soc. 34 (1972), 43-48
MSC: Primary 18H15
MathSciNet review: 0302743
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The product structure on the Hochschild-Serre spectral sequence generalizes to the spectral sequences of Butler-Horrocks. It is shown that Evens' proof of the finite generation of the integral cohomology ring of a finite group does not generalize to the relative cohomology groups of Adamson.

References [Enhancements On Off] (What's this?)

  • [1] I. T. Adamson, Cohomology theory for non-normal subgroups and non-normal fields, Proc. Glasgow Math. Assoc. 2 (1954), 66-76. MR 16, 442. MR 0065546 (16:442e)
  • [2] M. C. R. Butler and G. Horrocks, Classes of extensions and resolutions, Philos. Trans. Roy. Soc. London 254 (1961/62), 155-222. MR 32 #5706. MR 0188267 (32:5706)
  • [3] L. Evens, The cohomology ring of a finite group, Trans. Amer. Math. Soc. 101 (1961), 224-239. MR 25 #1191. MR 0137742 (25:1191)
  • [4] G. Hochschild, Relative homological algebra, Trans. Amer. Math. Soc. 82 (1956), 246-269. MR 18, 278. MR 0080654 (18:278a)
  • [5] G. Hochschild and J.-P. Serre, Cohomology of group extensions, Trans. Amer. Math. Soc. 74 (1953), 110-134. MR 14, 619. MR 0052438 (14:619b)
  • [6] S. Mac Lane, Homology, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #122.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 18H15

Retrieve articles in all journals with MSC: 18H15

Additional Information

Keywords: Hochschild-Serre spectral sequence, relative cohomology group, $ \tau $-transformation
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society