Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the length of gaps in the essential spectrum of a generalised Dirac operator

Author: W. D. Evans
Journal: Proc. Amer. Math. Soc. 35 (1972), 137-146
MSC: Primary 34B25; Secondary 47E05
MathSciNet review: 0306599
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The object of the paper is to give an upper bound for the length of the gaps that can occur in the essential spectrum of any selfadjoint operator which is generated by a generalised Dirac system of differential expressions in the Hilbert space $ {L^2}(a,b)$. An estimate is also obtained for the limit point of the spectrum which has least absolute value.

References [Enhancements On Off] (What's this?)

  • [1] M. S. P. Eastham, On the limit points of the spectrum, J. London Math. Soc. 43 (1968), 253-260. MR 37 #624. MR 0225027 (37:624)
  • [2] -, Gaps in the essential spectrum associated with singular differential operators, Quart. J. Math. Oxford Ser. (2) 18 (1967), 155-168. MR 36 #451. MR 0217361 (36:451)
  • [3] M. G. Gasymov, The inverse scattering problem for a system of Dirac equations of order 2n, Trudy Moskov. Mat. Obšč. 19 (1968), 41-112=Trans. Moscow Math. Soc. 1968, 41-119. MR 39 #2418. MR 0241073 (39:2418)
  • [4] J. Weidmann, Oszillationsmethoden für Systeme gewöhnlicher Differentialgleichungen, Math. Z. 119 (1971), 349-373. MR 0285758 (44:2975)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34B25, 47E05

Retrieve articles in all journals with MSC: 34B25, 47E05

Additional Information

Keywords: Selfadjoint operator, Hilbert space, deficiency indices, essential spectrum
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society