Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Modular forms on Hecke's modular groups


Author: Ronald J. Evans
Journal: Proc. Amer. Math. Soc. 37 (1973), 411-412
MSC: Primary 10D05
MathSciNet review: 0309872
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ H = \{ \tau = x + iy:y > 0\} $. Let $ \lambda > 0,k > 0,\gamma = \pm 1$. Let $ M(\lambda ,k,\gamma )$ denote the set of functions f for which $ f(\tau ) = \sum _{n = 0}^\infty {a_n}{e^{2\pi in\tau /\lambda }}$ and $ f( - 1/\tau ) = \gamma {(\tau /i)^k}f(\tau )$, for all $ \tau \in H$. Let $ {M_0}(\lambda ,k,\gamma )$ denote the set of $ f \in M(\lambda ,k.\gamma )$ for which $ f(\tau ) = O({y^c})$ uniformly for all x as $ y \to {0^ + }$, for some real c. We give a new proof that if $ \lambda = 2\cos (\pi /q)$ for an integer $ q \geqq 3$, then $ M(\lambda ,k,\gamma ) = {M_0}(\lambda ,k,\gamma )$.


References [Enhancements On Off] (What's this?)

  • [1] R. J. Evans, A fundamental region for Hecke's modular group, J. Number Theory (to appear).
  • [2] E. Hecke, Dirichlet series, Planographed Lecture Notes, Princeton Institute for Advanced Study, Edwards Brothers, Ann Arbor, Mich., 1938.
  • [3] Joseph Lehner, Discontinuous groups and automorphic functions, Mathematical Surveys, No. VIII, American Mathematical Society, Providence, R.I., 1964. MR 0164033 (29 #1332)
  • [4] A. P. Ogg, On modular forms with associated Dirichlet series, Ann. of Math. (2) 89 (1969), 184–186. MR 0234918 (38 #3232)
  • [5] Hans Petersson, Über die Berechnung der Skalarprodukte ganzer Modulformen, Comment. Math. Helv. 22 (1949), 168–199 (German). MR 0028426 (10,445b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 10D05

Retrieve articles in all journals with MSC: 10D05


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1973-0309872-6
PII: S 0002-9939(1973)0309872-6
Keywords: Modular form, Hecke modular groups, fundamental region, equivalent points
Article copyright: © Copyright 1973 American Mathematical Society