Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Modular forms on Hecke's modular groups


Author: Ronald J. Evans
Journal: Proc. Amer. Math. Soc. 37 (1973), 411-412
MSC: Primary 10D05
DOI: https://doi.org/10.1090/S0002-9939-1973-0309872-6
MathSciNet review: 0309872
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ H = \{ \tau = x + iy:y > 0\} $. Let $ \lambda > 0,k > 0,\gamma = \pm 1$. Let $ M(\lambda ,k,\gamma )$ denote the set of functions f for which $ f(\tau ) = \sum _{n = 0}^\infty {a_n}{e^{2\pi in\tau /\lambda }}$ and $ f( - 1/\tau ) = \gamma {(\tau /i)^k}f(\tau )$, for all $ \tau \in H$. Let $ {M_0}(\lambda ,k,\gamma )$ denote the set of $ f \in M(\lambda ,k.\gamma )$ for which $ f(\tau ) = O({y^c})$ uniformly for all x as $ y \to {0^ + }$, for some real c. We give a new proof that if $ \lambda = 2\cos (\pi /q)$ for an integer $ q \geqq 3$, then $ M(\lambda ,k,\gamma ) = {M_0}(\lambda ,k,\gamma )$.


References [Enhancements On Off] (What's this?)

  • [1] R. J. Evans, A fundamental region for Hecke's modular group, J. Number Theory (to appear).
  • [2] E. Hecke, Dirichlet series, Planographed Lecture Notes, Princeton Institute for Advanced Study, Edwards Brothers, Ann Arbor, Mich., 1938.
  • [3] Joseph Lehner, Discontinuous groups and automorphic functions, Mathematical Surveys, No. VIII, American Mathematical Society, Providence, R.I., 1964. MR 0164033
  • [4] A. P. Ogg, On modular forms with associated Dirichlet series, Ann. of Math. (2) 89 (1969), 184–186. MR 0234918, https://doi.org/10.2307/1970815
  • [5] Hans Petersson, Über die Berechnung der Skalarprodukte ganzer Modulformen, Comment. Math. Helv. 22 (1949), 168–199 (German). MR 0028426, https://doi.org/10.1007/BF02568055

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 10D05

Retrieve articles in all journals with MSC: 10D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0309872-6
Keywords: Modular form, Hecke modular groups, fundamental region, equivalent points
Article copyright: © Copyright 1973 American Mathematical Society