Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Representation theorems for compact operators


Author: Daniel J. Randtke
Journal: Proc. Amer. Math. Soc. 37 (1973), 481-485
MSC: Primary 47B05; Secondary 46B15
DOI: https://doi.org/10.1090/S0002-9939-1973-0310685-X
MathSciNet review: 0310685
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that $ {c_0}$ (the Banach space of zero-convergent sequences) is the only Banach space with basis that satisfies the following property: For every compact operator $ T:{c_0} \to E$ from $ {c_0}$ into a Banach space E, there is a sequence $ \lambda $ in $ {c_0}$ and an unconditionally summable sequence $ \{ {y_n}\} $ in E such that $ T\mu = \sum {\lambda _n}{\mu _n}{y_n}$ for each $ \mu $ in $ {c_0}$. This result is then used to show that a linear operator $ T:E \to F$ from a locally convex space E into a Fréchet space F has a representation of the form $ Tx = \sum {\lambda _n}\langle x,{a_n}\rangle {y_n}$, where $ \lambda $ is a sequence in $ {c_0},\{ {a_n}\} $ is an equicontinuous sequence in the topological dual $ E'$ of E and $ \{ {y_n}\} $ is an unconditionally summable sequence in F, if and only if T can be ``compactly factored'' through $ {c_0}$.


References [Enhancements On Off] (What's this?)

  • [1] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164. MR 22 #5872. MR 0115069 (22:5872)
  • [2] J. B. Conway, The strict topology and compactness in the space of measures. II, Trans. Amer. Math. Soc. 126 (1967), 474-486. MR 34 #6503. MR 0206685 (34:6503)
  • [3] M. M. Day, Normed linear spaces, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, N.F., Heft 21, Academic Press, New York; Springer-Verlag, Berlin, 1962. MR 26 #2847.
  • [4] S. Goldberg, Unbounded linear operators: Theory and applications, McGraw-Hill, New York, 1966. MR 34 #580. MR 0200692 (34:580)
  • [5] A. Pietsch, Nukleare lokalkonvexe Räume, 2nd ed., Akademie-Verlag, Berlin, 1969. MR 0181888 (31:6114)
  • [6] D. Randtke, Characterizations of precompact maps, Schwartz spaces and nuclear spaces, Trans. Amer. Math. Soc. 165 (1972), 87-101. MR 0305009 (46:4139)
  • [7] I. Singer, Bases in Banach spaces. I, Springer-Verlag, New York, 1970. MR 0298399 (45:7451)
  • [8] T. Terzioglu, A characterization of compact linear mappings, Arch. Math. 22 (1971), 76-78. MR 0291865 (45:954)
  • [9] -, On compact and infinite-nuclear mappings, Bull. Math. Soc. Sci. Math. R.S. Roumanie 14 (62) (1970), 93-99. MR 0336414 (49:1189)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B05, 46B15

Retrieve articles in all journals with MSC: 47B05, 46B15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0310685-X
Keywords: Normed space, Banach space, Fréchet space, compact linear operator, precompact linear operator, unconditionally summable sequence, weakly unconditionally summable sequence, equicontinuous sequence, normalized basis, associated sequence of coefficient forms
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society