Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Bianalytic functions with exceptional values

Author: P. Krajkiewicz
Journal: Proc. Amer. Math. Soc. 38 (1973), 75-79
MSC: Primary 30A92
MathSciNet review: 0313519
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f(z,\bar z)$ be a bianalytic function which omits the value zero in some deleted neighborhood $ A$ of an isolated singularity $ {z_0}$. It is shown that there is a function $ g(z)$ analytic on $ A$ and a function $ h(z,\bar z)$ bianalytic on $ A$ with a nonessential singularity at $ {z_0}$ such that $ f(z,\bar z) = g(z)h(z,\bar z)$ on $ A$.

References [Enhancements On Off] (What's this?)

  • [1] M. B. Balk, Entire polyanalytic functions with a bounded set of zeros, Izv. Akad. Nauk Armjan. SSR Ser. Mat. 1 (1966), no. 5, 341-357. (Russian) MR 34 #6127. MR 0206308 (34:6127)
  • [2] W. Bosch and P. Krajkiewicz, The big Picard theorem for polyanalytic functions, Proc. Amer. Math. Soc. 26 (1970). 145-150. MR 41 #8692. MR 0264096 (41:8692)
  • [3] H. Cartan, Sur les zéroes des combinaisons linéaires de $ p$ fonctions holomorphes données, Mathematica (Cluj) 7 (1933), 5-31.
  • [4] P. Montel, Leçons sur les familles normales de fonctions analytiques et leurs applications, Gauthier-Villars, Paris, 1927.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A92

Retrieve articles in all journals with MSC: 30A92

Additional Information

Keywords: Bianalytic functions, polyanalytic functions, isolated singularity, exceptional values, Picard theorem, quasi normal families
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society