Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the homotopy type of irregular sets


Authors: P. F. Duvall and L. S. Husch
Journal: Proc. Amer. Math. Soc. 38 (1973), 419-422
MSC: Primary 54C55
DOI: https://doi.org/10.1090/S0002-9939-1973-0312458-0
MathSciNet review: 0312458
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ M$ is an open connected manifold and $ h$ is a homeomorphism of $ M$ onto itself such that $ h$ is positively regular on $ M$ and the set of irregular points, $ \operatorname{Irr} (h)$, is a nonseparating compactum, then it is shown that $ \operatorname{Irr} (h)$ is a strong deformation retract of $ M$.


References [Enhancements On Off] (What's this?)

  • [1] P. F. Duvall, Jr. and L. S. Husch, Taming irregular sets of homeomorphisms, Bull. Amer. Math. Soc. 78 (1972), 77-79. MR 0290377 (44:7561)
  • [2] -, Homeomorphisms with polyhedral irregular sets, Trans. Amer. Math. Soc. (to appear).
  • [3] -, Analysis on topological manifolds, Fund. Math. (to appear). MR 0367952 (51:4194)
  • [4] S. T. Hu, Theory of retracts, Wayne State Univ. Press, Detroit, Mich., 1965. MR 31 #6202. MR 0181977 (31:6202)
  • [5] L. S. Husch, Equicontinuous commutative semigroups of onto functions (submitted).
  • [6] S. K. Kaul, On almost regular homeomorphisms, Canad. J. Math. 20 (1968), 1-6. MR 36 #5908. MR 0222858 (36:5908)
  • [7] A. B. Paalman-de Miranda, Topological semigroups, Mathematisch Centrum, Amsterdam, 1970.
  • [8] L. S. Pontrjagin, Topological groups, GITTL, Moscow, 1954; English transl., Gordon and Breach, New York, 1966. MR 17, 171; MR 34 #1439. MR 0201557 (34:1439)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54C55

Retrieve articles in all journals with MSC: 54C55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0312458-0
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society