Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The additive group of commutative rings generated by idempotents

Author: Paul Hill
Journal: Proc. Amer. Math. Soc. 38 (1973), 499-502
MSC: Primary 13A99
MathSciNet review: 0316439
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ R$ is a ring, let $ {R^ + }$ denote its additive group. Our purpose is to give an elementary proof that if $ R$ is a commutative ring generated by idempotents, then any subring of $ R$ generated by idempotents is pure. This yields immediately an independent proof of the following result of G. M. Bergman. If $ R$ is a commutative ring with identity and if $ R$ is generated by idempotents, then $ {R^ + }$ is a direct sum of cyclic groups.

References [Enhancements On Off] (What's this?)

  • [1] G. Bergman, Boolean rings of projection maps, J. London Math. Soc. (2) 4 (1972), 593-598. MR 0311531 (47:93)
  • [2] G. Nöbeling, Verallgemeinerung eines Satzes von Herrn E. Specker, Invent. Math. 6 (1968), 41-55. MR 38 #233. MR 0231907 (38:233)
  • [3] E. Specker, Additive Gruppen von Folgen ganzer Zahlen, Portugal. Math. 9 (1950), 131-140. MR 12, 587. MR 0039719 (12:587b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13A99

Retrieve articles in all journals with MSC: 13A99

Additional Information

Keywords: Specker theorem, Nöbeling theorem, direct sum of cyclic groups, pure subgroups, commutative rings, idempotent generators
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society