Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Interpolation sets for convolution measure algebras


Author: Colin C. Graham
Journal: Proc. Amer. Math. Soc. 38 (1973), 512-522
MSC: Primary 43A10
DOI: https://doi.org/10.1090/S0002-9939-1973-0318778-8
MathSciNet review: 0318778
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: These are proved: (1) The union of two interpolation sets for a regular commutative convolution measure algebra is not necessarily an interpolation set. (2) There exists a regular commutative convolution measure algebra for which interpolation sets are not necessarily of spectral synthesis, while every singleton is a Ditkin set. (3) For every nondiscrete LCA group $ G$, there exist compact interpolation sets for $ M(G)$ whose union is not an interpolation set. A tensor algebra method is used.


References [Enhancements On Off] (What's this?)

  • [1] J. Benedetto, (LF)-spaces and distributions on compact groups and spectral synthesis on $ R/2\pi Z$, Math. Ann. 194 (1971), 52-67. MR 0296611 (45:5670)
  • [2] S. W. Drury, Sur les ensembles parfaits et les séries trigonométriques, C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A94-A95. MR 42 #6529. MR 0271646 (42:6529)
  • [3] I. M. Gel'fand, D. A. Raĭkov and G. E. Šilov, Commutative normed rings, Fizmatgiz, Moscow, 1960; English transl., Chelsea, New York, 1964. MR 23 #A1242; MR 34 #4940.
  • [4] C. S. Herz, Drury's Lemma and Helson sets, Studia Math. 42 (1972), 205-219. MR 0306817 (46:5939)
  • [5] E. Hewitt and H. S. Zuckerman, Structure theory for a class of convolution algebras, Pacific J. Math. 7 (1957), 913-941. MR 19, 435. MR 0087915 (19:435e)
  • [6] J.-P. Kahane, Séries de Fourier absolument convergentes, Springer, Berlin, 1970. MR 43 #801. MR 0275043 (43:801)
  • [7] T. W. Körner, Sets of synthesis for general algebras, Proc. Cambridge Philos. Soc. 67 (1970), 559-568. MR 41 #830. MR 0256173 (41:830)
  • [8] -, Two results on very strongly homogeneous algebras, Proc. Cambridge Philos. Soc. 68 (1970), 363-376. MR 41 #8994. MR 0264399 (41:8994)
  • [9] O. C. McGehee, Helson sets in $ {T^n}$, Conference in Harmonic Analysis, Lecture Notes in Math., vol. 266, Springer-Verlag, Berlin, 1972. MR 0394056 (52:14862)
  • [10] W. Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Appl. Math., no. 12, Interscience, New York, 1962. MR 27 #2808. MR 0152834 (27:2808)
  • [11] S. Saeki, Spectral synthesis for the Kronecker sets, J. Math. Soc. Japan 21 (1969), 549-563. MR 40 #7733. MR 0254525 (40:7733)
  • [12] A. B. Simon, The ideal space and Silov boundary of a subalgebra of measures on a group, J. Math. Anal. Appl. 6 (1963), 266-276. MR 26 #6804. MR 0149314 (26:6804)
  • [13] J. L. Taylor, The structure of convolution measure algebras, Trans. Amer. Math. Soc. 119 (1965), 150-166. MR 32 #2932. MR 0185465 (32:2932)
  • [14] N. Th. Varopoulos, Groups of continuous functions in harmonic analysis, Acta. Math. 125 (1970), 109-152. MR 0282155 (43:7868)
  • [15] -, Tensor algebras and harmonic analysis, Acta. Math. 119 (1967), 51-112. MR 39 #1911. MR 0240564 (39:1911)
  • [16] -, Sur les ensembles parfaits et les séries trigonométriques, C. R. Acad. Sci. Paris 260 (1965), 3831-3834. MR 32 #322. MR 0182840 (32:322)
  • [17] -, The functions that operate on $ {B_0}(\Gamma )$ of a discrete group $ \Gamma $, Bull. Soc. Math. France 93 (1965), 301-321. MR 34 #565. MR 0200677 (34:565)
  • [18] T. W. Körner, A pseudofunction on a Helson set, Asterisque (to appear).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A10

Retrieve articles in all journals with MSC: 43A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0318778-8
Keywords: Convolution measure algebras, interpolation set, Helson set
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society