Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A generalization of the dog bone space to $ E\sp{n}$


Author: W. T. Eaton
Journal: Proc. Amer. Math. Soc. 39 (1973), 379-387
MSC: Primary 57A15
MathSciNet review: 0322877
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we construct an upper semicontinuous decomposition of $ {E^n}(n \geqq 3)$ into points and tame arcs such that the associated decomposition space is distinct from $ {E^n}$.


References [Enhancements On Off] (What's this?)

  • [1] M. L. Antoine, Sur l'homeomorphie de deux figures et de leurs voisinages, J. Math. Pures Appl. 86 (1921), 221-325.
  • [2] R. H. Bing, A decomposition of 𝐸³ into points and tame arcs such that the decomposition space is topologically different from 𝐸³, Ann. of Math. (2) 65 (1957), 484–500. MR 0092961
  • [3] R. H. Bing, A wild surface each of whose arcs is tame, Duke Math. J. 28 (1961), 1–15. MR 0123302
  • [4] William A. Blankinship, Generalization of a construction of Antoine, Ann. of Math. (2) 53 (1951), 276–297. MR 0040659

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57A15

Retrieve articles in all journals with MSC: 57A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0322877-4
Keywords: Tame arcs, wild embeddings, cellular maps, upper semi-continuous
Article copyright: © Copyright 1973 American Mathematical Society