Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Conditions for $ {\rm Ker}(R[X]\rightarrow R[c/b])$ to have a linear base


Author: L. J. Ratliff
Journal: Proc. Amer. Math. Soc. 39 (1973), 509-514
MSC: Primary 13B25; Secondary 13A15
DOI: https://doi.org/10.1090/S0002-9939-1973-0316442-2
MathSciNet review: 0316442
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A number of necessary and/or sufficient conditions are given for the kernel of the homomorphism in the title to be generated by linear polynomials. Two applications are given.


References [Enhancements On Off] (What's this?)

  • [1] E. Graham Evans, Jr., A generalization of Zariski's main theorem, Proc. Amer. Math. Soc. 26 (1970), 45-48. MR 41 #5340. MR 0260716 (41:5340)
  • [2] M. Nagata, Local rings, Interscience Tracts in Pure and Appl. Math., no. 13, Interscience, New York, 1962. MR 27 #5790. MR 0155856 (27:5790)
  • [3] Christian Peskine, Une généralisation du ``main theorem'' de Zariski, Bull. Sci. Math. (2) 90 (1966), 119-127. MR 34 #5862. MR 0206037 (34:5862)
  • [4] L. J. Ratliff, Jr., Note on analytically unramified semi-local rings, Proc. Amer. Math. Soc. 17 (1966), 274-279. MR 32 #4149. MR 0186691 (32:4149)
  • [5] -, Characterizations of catenary rings, Amer. J. Math. 93 (1971), 1070-1108. MR 0297752 (45:6804)
  • [6] -, On prime divisors of the integral closure of a principal ideal, J. Reine. Angew. Math. 255 (1972), 210-220. MR 0311638 (47:200)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13B25, 13A15

Retrieve articles in all journals with MSC: 13B25, 13A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0316442-2
Keywords: Integrally closed ideal, isolated over, linear base, Rees ring
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society