Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Finite Frattini factors in finitely generated soluble groups


Author: John C. Lennox
Journal: Proc. Amer. Math. Soc. 41 (1973), 356-360
MSC: Primary 20F05
DOI: https://doi.org/10.1090/S0002-9939-1973-0333003-X
MathSciNet review: 0333003
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Results of Philip Hall are used to prove that subgroups of finitely generated Abelian-by-nilpotent groups are finite if their Frattini factor groups are finite.


References [Enhancements On Off] (What's this?)

  • [1] R. Baer, Representations of groups as quotient groups. II. Minimal central chains of a group, Trans. Amer. Math. Soc. 58 (1945), 348-389. MR 7, 372. MR 0015107 (7:372a)
  • [2] -, Nil-Gruppen, Math. Z. 62 (1955), 402-437. MR 17, 124. MR 0071424 (17:124e)
  • [3] G. Baumslag, Wreath products and $ p$-groups, Proc. Cambridge Philos. Soc. 55 (1959), 224-231. MR 21 #4179. MR 0105437 (21:4179)
  • [4] P. Hall, Finiteness conditions for soluble groups, Proc. London Math. Soc. (3) 4 (1954), 419-436. MR 17, 344. MR 0072873 (17:344c)
  • [5] -, On the finiteness of certain soluble groups, Proc. London Math. Soc. (3) 9 (1959), 595-622. MR 22 #1618. MR 0110750 (22:1618)
  • [6] I. Kaplansky, Infinite Abelian groups, Univ. of Michigan Press, Ann Arbor, Mich., 1954. MR 16, 444. MR 0065561 (16:444g)
  • [7] B. H. Neumann and H. Neumann, Embedding theorems for groups, J. London Math. Soc. 34 (1959), 465-479. MR 0163968 (29:1267)
  • [8] D. J. S. Robinson, Infinite soluble and nilpotent groups, Queen Mary College Math. Notes, London, 1967. MR 42 #4635. MR 0269740 (42:4635)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20F05

Retrieve articles in all journals with MSC: 20F05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0333003-X
Keywords: Frattini subgroup, finitely generated soluble group
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society