Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Derivations of $ AW\sp{\ast} $-algebras


Author: James C. Deel
Journal: Proc. Amer. Math. Soc. 42 (1974), 85-95
MSC: Primary 46L10
DOI: https://doi.org/10.1090/S0002-9939-1974-0343050-0
MathSciNet review: 0343050
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that every derivation on an $ A{W^ \ast }$-algebra of type $ \mathrm{II}_1$ with central trace is inner. The proof employs a result on the algebraic decomposition of such algebras which is of interest even in the $ {W^ \ast }$ case.


References [Enhancements On Off] (What's this?)

  • [1] S. K. Berberian, On the projection geometry of a finite $ A{W^\ast}$-algebra, Trans. Amer. Math. Soc. 83 (1956), 493-509. MR 19, 47. MR 0085482 (19:47c)
  • [2] J. Dixmier, Les anneaux d'opérateurs de classe fini, Ann. Sci. École Norm. Sup. (3) 66 (1949), 209-261. MR 11, 370. MR 0032940 (11:370c)
  • [3] -, Sur certains espaces considérées par M. H. Stone, Summa Brasil. Math. 2 (1951), 151-182. MR 14, 69. MR 0048787 (14:69e)
  • [4] J. Feldman, Embedding of $ A{W^\ast}$-algebras, Duke Math. J. 23 (1956), 303-307. MR 17, 1229. MR 0078669 (17:1229a)
  • [5] J. Feldman, Nonseparability of certain finite factors, Proc. Amer. Math. Soc. 7 (1956), 23-26. MR 18, 139. MR 0079742 (18:139e)
  • [6] J. Glimm, A Stone-Weierstrass theorem for $ {C^ \ast }$-algebras, Ann. of Math. (2) 72 (1960), 216-244. MR 22 #7005. MR 0116210 (22:7005)
  • [7] M. Goldman, Structure of $ A{W^ \ast }$-algebras. I, Duke Math. J. 23 (1956), 23-34. MR 17, 512; 1437. MR 0073949 (17:512f)
  • [8] A. A. Hall, Derivations of certain $ {C^ \ast }$-algebras, J. London Math. Soc. (2) 5 (1972), 321-329. MR 0374926 (51:11122)
  • [9] H. Halpern, Embedding as a double commutator in a type I $ A{W^ \ast }$-algebra, Trans. Amer. Math. Soc. 148 (1970), 85-98. MR 41 #837. MR 0256180 (41:837)
  • [10] I. Kaplansky, Algebras of type I, Ann. of Math. (2) 56 (1952), 460-472. MR 14, 291. MR 0050182 (14:291b)
  • [11] -, Modules over operator algebras, Amer. J. Math. 75 (1953), 839-858. MR 15, 327. MR 0058137 (15:327f)
  • [12] J. R. Ringrose, Automatic continuity of derivations of operator algebras, J. London Math. Soc. (2) 5 (1972), 432-438. MR 0374927 (51:11123)
  • [13] S. Stratila and L. Zsidó, An algebraic reduction theory for $ {W^ \ast }$-algebras. I, J. Functional Analysis 11 (1972), 295-313.
  • [14] H. Takemoto and J. Tomiyama, On the reduction of finite von Neumann algebras (to appear).
  • [15] M. Takesaki, On the cross-norm of the direct product of $ {C^ \ast }$-algebras, Tôhoku Math. J. (2) 16 (1964), 111-122. MR 29 #2668. MR 0165384 (29:2668)
  • [16] -, The quotient algebra of a finite von Neumann algebra, Pacific J. Math. 36 (1971), 827-831. MR 43 #6739. MR 0281020 (43:6739)
  • [17] J. Vesterstrom, Quotients of finite $ {W^ \ast }$-algebras, J. Functional Analysis 9 (1972), 322-335. MR 0296715 (45:5774)
  • [18] H. Widom, Embedding in algebras of type I, Duke Math. J. 23 (1956), 309-324. MR 17, 1228. MR 0078668 (17:1228c)
  • [19] F. B. Wright, A reduction for algebras of finite type, Ann. of Math. (2) 60 (1954), 560-570. MR 16, 375. MR 0065037 (16:375f)
  • [20] T. Yen, Trace on finite $ A{W^ \ast }$-algebras, Duke Math. J. 22 (1955), 207-222. MR 16, 1033. MR 0069404 (16:1033c)
  • [21] -, Quotient algebra of a finite $ A{W^ \ast }$-algebra, Pacific J. Math. 6 (1956), 389-395. MR 18, 138. MR 0079735 (18:138c)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L10

Retrieve articles in all journals with MSC: 46L10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0343050-0
Keywords: Derivations, $ A{W^ \ast }$-algebras, algebraic reduction theory
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society