Regularity in terms of reductions in local Noether lattices
Author:
Michael E. Detlefsen
Journal:
Proc. Amer. Math. Soc. 43 (1974), 17
MSC:
Primary 13A15
MathSciNet review:
0327728
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: An sequence in a local Noether lattice is a sequence of words which satisfy certain factorization properties. If satisfies the union condition, there exist sequences which can be extended to minimal bases for the powers of . Consequently, if satisfies the union condition, is regular if and only if is a minimal reduction.
 [1]
Garrett
Birkhoff, Lattice theory, Third edition. American Mathematical
Society Colloquium Publications, Vol. XXV, American Mathematical Society,
Providence, R.I., 1967. MR 0227053
(37 #2638)
 [2]
Kenneth
P. Bogart, Structure theorems for regular local Noether
lattices, Michigan Math. J. 15 (1968), 167–176.
MR
0227057 (37 #2642)
 [3]
A.
H. Clifford and G.
B. Preston, The algebraic theory of semigroups. Vol. II,
Mathematical Surveys, No. 7, American Mathematical Society, Providence,
R.I., 1967. MR
0218472 (36 #1558)
 [4]
R.
P. Dilworth, Abstract commutative ideal theory, Pacific J.
Math. 12 (1962), 481–498. MR 0143781
(26 #1333)
 [5]
E.
W. Johnson, 𝐴transforms and Hilbert
functions in local lattices, Trans. Amer. Math.
Soc. 137 (1969),
125–139. MR 0237387
(38 #5675), http://dx.doi.org/10.1090/S00029947196902373876
 [6]
, transforms in Noether lattices, Dissertation, University of California, Riverside, Calif., 1966.
 [7]
D.
G. Northcott, Ideal theory, Cambridge Tracts in Mathematics
and Mathematical Physics, No. 42, Cambridge, at the University Press, 1953.
MR
0058575 (15,390f)
 [8]
D.
G. Northcott and D.
Rees, Reductions of ideals in local rings, Proc. Cambridge
Philos. Soc. 50 (1954), 145–158. MR 0059889
(15,596a)
 [1]
 Garrett Birkhoff, Lattice theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R.I., 1967. MR 37 #2638. MR 0227053 (37:2638)
 [2]
 K. P. Bogart, Structure theorem for regular local Noether lattices, Michigan Math. J. 15 (1968), 167176. MR 37 #2642. MR 0227057 (37:2642)
 [3]
 A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. II, Math. Surveys, no. 7, Amer. Math. Soc., Providence, R.I., 1967. MR 36 #1558. MR 0218472 (36:1558)
 [4]
 R. P. Dilworth, Abstract commutative ideal theory, Pacific J. Math. 12 (1962), 481498. MR 26 #1333. MR 0143781 (26:1333)
 [5]
 E. W. Johnson, transforms and Hilbert functions in local lattices, Trans. Amer. Math. Soc. 137 (1969), 125139. MR 38 #5675. MR 0237387 (38:5675)
 [6]
 , transforms in Noether lattices, Dissertation, University of California, Riverside, Calif., 1966.
 [7]
 D. G. Northcott, Ideal theory, Cambridge Tracts in Math. and Math. Phys., no. 42, Cambridge Univ. Press, Cambridge, 1953. MR 15, 390. MR 0058575 (15:390f)
 [8]
 D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Cambridge Philos. Soc. 50 (1954), 145158. MR 15, 596. MR 0059889 (15:596a)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
13A15
Retrieve articles in all journals
with MSC:
13A15
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939197403277280
PII:
S 00029939(1974)03277280
Keywords:
Regular local Noether lattice,
free monoid,
reduction,
union condition,
analytically independent,
sequence
Article copyright:
© Copyright 1974
American Mathematical Society
