Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Commutants and cyclic vectors


Authors: James A. Deddens, Ralph Gellar and Domingo A. Herrero
Journal: Proc. Amer. Math. Soc. 43 (1974), 169-170
MSC: Primary 47A65
DOI: https://doi.org/10.1090/S0002-9939-1974-0328643-9
MathSciNet review: 0328643
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This note analyzes the relationship between various statements concerning the commutant of a bounded linear operator on a Hilbert space and the existence of cyclic vectors for the operator and its adjoint.


References [Enhancements On Off] (What's this?)

  • [1] R. G. Douglas and C. Pearcy, On a topology for invariant subspaces, J. Functional Analysis 2 (1968), 323-341. MR 38 #1547. MR 0233224 (38:1547)
  • [2] R. Gellar, Two sublattices of weighted shift invariant subspaces, Indiana Univ. Math. J. 23 (1973), 1-10. MR 0318928 (47:7474)
  • [3] P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, N.J., 1967. MR 34 #8178. MR 0208368 (34:8178)
  • [4] H. Helson, Lectures on invariant subspaces, Academic Press, New York, 1964. MR 30 #1409. MR 0171178 (30:1409)
  • [5] D. A. Herrero and N. Salinas, nalytically invariant and biinvariant subspaces, Trans. Amer. Math. Soc. 173 (1972), 117-136. MR 0312294 (47:856)
  • [6] D. A. Herrero, Eigenvectors and cyclic vectors for bilateral weighted shifts, Rev. Un. Mat. Argentina. 26 (1972), 24-41. MR 0336395 (49:1170)
  • [7] T. R. Turner, Double commutants of singly generated operator algebras, Dissertation, University of Michigan, Ann Arbor, Mich., 1971.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A65

Retrieve articles in all journals with MSC: 47A65


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0328643-9
Keywords: Commutant, cyclic vectors, weighted shift
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society