Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Ideals $ I$ of $ R[X]$ for which $ R[X]/I$ is $ R$-projective


Authors: J. W. Brewer and W. J. Heinzer
Journal: Proc. Amer. Math. Soc. 43 (1974), 21-25
MSC: Primary 13A15
DOI: https://doi.org/10.1090/S0002-9939-1974-0330130-9
MathSciNet review: 0330130
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A characterization is given of those ideals $ I$ of the polynomial ring $ R[X]$ such that $ R[X]/I$ is $ R$-projective. It is also shown that a commutative ring $ R$ has the property ``$ R[X]/IR$-projective implies $ I$ is a finitely generated ideal'' if and only if $ R$ has only a finite number of idempotents.


References [Enhancements On Off] (What's this?)

  • [BM] J. W. Brewer and P. R. Montgomery, The finiteness of $ I$ when $ R[X]/I$ is $ R$-projective, Proc. Amer. Math. (to appear).
  • [HO] W. Heinzer and J. Ohm, The finiteness of $ I$ when $ R[X]$ is $ R$-flat. II, Proc. Amer. Math. Soc. 35 (1972), 1-8. MR 0306177 (46:5304)
  • [J] C. U. Jensen, Homological dimension of $ {\chi _0}$-coherent rings, Math. Scand. 20 (1967), 55-60. MR 35 #2921. MR 0212046 (35:2921)
  • [L] J. Lambek, Lectures on rings and modules, Ginn-Blaisdell, Waltham, Mass., 1966. MR 34 #5857. MR 0206032 (34:5857)
  • [M] Y. Miyashita, Commutative Frobenius algebras generated by a single element, J. Fac. Sci. Hokkaido Univ. Ser. I, 21 (1970/71), 166-176. MR 45 #5127. MR 0296066 (45:5127)
  • [OR] J. Ohm and D. Rush, The finiteness of $ I$ when $ R[X]/I$ is flat, Trans. Amer. Math. Soc. 171 (1972), 377-407. MR 0306176 (46:5303)
  • [R] J. Rotman, Notes on homological algebra, Van Nostrand Reinhold, Cincinnati, Ohio, 1970. MR 0409590 (53:13342)
  • [V] W. V. Vasconcelos, Finiteness in projective ideals, J. Algebra 25 (1973), 269-278. MR 0314828 (47:3378)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13A15

Retrieve articles in all journals with MSC: 13A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0330130-9
Keywords: Polynomial ring, projective module, projective ideal, content, finitely generated ideal, idempotent element
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society