Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On invertible operators and invariant subspaces


Author: Avraham Feintuch
Journal: Proc. Amer. Math. Soc. 43 (1974), 123-126
MSC: Primary 47A15
DOI: https://doi.org/10.1090/S0002-9939-1974-0331082-8
MathSciNet review: 0331082
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be an invertible operator on a complex Hilbert space $ H$. Sufficient conditions are given for the inverse of $ A$ to be a weak limit of polynomials in $ A$.


References [Enhancements On Off] (What's this?)

  • [1] P. Fillmore and J. P. Williams, On operator ranges, Advances in Math. 7 (1971), 254-281. MR 45 #2518. MR 0293441 (45:2518)
  • [2] C. Foias, Invariant para-closed subspaces, Indiana Univ. Math. J. 21 (1972), 887-906. MR 0293439 (45:2516)
  • [3] H. Radjavi and P. Rosenthal, On invariant subspaces and reflexive algebras, Amer. J. Math. 91 (1969), 683-692. MR 40 #4796. MR 0251569 (40:4796)
  • [4] J. Wermer, On invariant subspaces of normal operators, Proc. Amer. Math. Soc. 3 (1952), 270-277. MR 14, 55. MR 0048700 (14:55g)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A15

Retrieve articles in all journals with MSC: 47A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0331082-8
Keywords: Invertible operator, invariant subspace, numerical range, operator range
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society