Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

A function space integral for a Banach space of functionals on Wiener space


Authors: G. W. Johnson and D. L. Skoug
Journal: Proc. Amer. Math. Soc. 43 (1974), 141-148
MSC: Primary 28A40; Secondary 46G10
MathSciNet review: 0340536
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In an earlier paper the authors established the existence of Cameron and Storvick's function space integral $ {J_q}(F)$ for a class of finite-dimensional functionals $ F$. Here we consider a space $ A$ of not necessarily finite-dimensional functionals generated by the earlier functionals. We show that $ A$ is a Banach space and recognize $ A$ as the direct sum of more familiar Banach spaces. We also show that the function space integral $ J_q^{{\text{an}}}(F)$ exists for $ F \in A$. In contrast we give an example of an $ {F_0} \in A$ such that $ J_q^{{\text{seq}}}({F_0})$ does not exist.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28A40, 46G10

Retrieve articles in all journals with MSC: 28A40, 46G10


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1974-0340536-X
PII: S 0002-9939(1974)0340536-X
Keywords: Wiener integral, operator valued function space integral, Feynman integral, Banach space
Article copyright: © Copyright 1974 American Mathematical Society



Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia