Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A problem of Martin concerning strongly convex metrics on $ E\sp{3}$


Authors: E. D. Tymchatyn and B. O. Friberg
Journal: Proc. Amer. Math. Soc. 43 (1974), 461-464
MSC: Primary 55A25
DOI: https://doi.org/10.1090/S0002-9939-1974-0336735-3
MathSciNet review: 0336735
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $ d$ is a strongly convex metric on $ {E^3}$ and $ C$ is a simple closed curve in $ {E^3}$ such that $ C$ is the union of three line segments then $ C$ is unknotted.


References [Enhancements On Off] (What's this?)

  • [1] R. H. Bing, Locally tame sets are tame, Ann. of Math. (2) 59 (1954), 145-158. MR 15, 816. MR 0061377 (15:816d)
  • [2] Joseph Martin, Recent developments in the geometry of continuous curves, Topology Conference Arizona State University 1967, edited by E. E. Grace, Tempe, Arizona.
  • [3] D. Rolfsen, Strongly convex metrics in cells, Bull. Amer. Math. Soc. 74 (1968), 171-175. MR 37 #2180. MR 0226591 (37:2180)
  • [4] N. Steenrod, The topology of fibre bundles, Princeton Math. Series, vol. 14, Princeton Univ. Press, Princeton, N.J., 1951. MR 12, 522. MR 0039258 (12:522b)
  • [5] E. D. Tymchatyn, Antichains and products in partially ordered spaces, Trans. Amer. Math. Soc. 146 (1969), 511-520. MR 41 #7642. MR 0263037 (41:7642)
  • [6] -, Some order theoretic characterizations of the $ 3$-cell, Colloq. Math. 24 (1972), 195-203.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55A25

Retrieve articles in all journals with MSC: 55A25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0336735-3
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society