Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A relation in $ H\sp{\ast}(M{\rm O}\langle 8\rangle ,\,Z\sp{2})$

Author: V. Giambalvo
Journal: Proc. Amer. Math. Soc. 43 (1974), 481-482
MSC: Primary 55G10; Secondary 57D90
MathSciNet review: 0339174
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that $ {H^ \ast }(MO\langle 8\rangle ,{Z_2})$ does not split as a module over the Steenrod algebra into a direct sum of modules, each having a single generator.

References [Enhancements On Off] (What's this?)

  • [1] D. W. Anderson, E. H. Brown, Jr. and F. P. Peterson, The structure of the Spin cobordism ring, Ann. of Math. 90 (1969), 157-186.
  • [2] V. Giambalvo, On $ \langle 8\rangle $; cobordism, Illinois J. Math. 15 (1971), 533-541. MR 44 #4757. MR 0287553 (44:4757)
  • [3] J. Milnor, On the cobordism ring $ {\Omega ^ \ast }$ and a complex analogue. I, Amer. J. Math. 82 (1960), 505-521. MR 22 #9975. MR 0119209 (22:9975)
  • [4] R. Thom, Quelques propriétés globales des variétés differentiables, Comment. Math. Helv. 28 (1954), 17-86. MR 15, 890. MR 0061823 (15:890a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55G10, 57D90

Retrieve articles in all journals with MSC: 55G10, 57D90

Additional Information

Keywords: $ \langle 8\rangle $-cobordism, Steenrod algebra, splitting over Steenrod algebra
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society