Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Immersion in the metastable range and $ 2$-localization


Authors: Henry H. Glover and Guido Mislin
Journal: Proc. Amer. Math. Soc. 43 (1974), 443-448
MSC: Primary 57D40
DOI: https://doi.org/10.1090/S0002-9939-1974-0341504-4
MathSciNet review: 0341504
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Our purpose is to study immersion properties in the metastable range using the techniques of localization of homotopy types. The main theorem states that immersion of a manifold $ M$ in euclidean space in the metastable range depends only upon the homotopy type $ {M_2}$, the localization of $ M$ at the prime 2.


References [Enhancements On Off] (What's this?)

  • [1] M. F. Atiyah, Thom complexes, Proc. London Math. Soc. (3) 11 (1961), 291-310. MR 24 #A1727. MR 0131880 (24:A1727)
  • [2] A. Haefliger, Plongements différentiable de variétés dans variétés, Comment. Math. Helv. 36 (1961), 47-82. MR 26 #3069. MR 0145538 (26:3069)
  • [3] P. J. Hilton, G. Mislin and J. Roitberg, Homotopical localization, Proc. London Math. Soc. 26 (1973), 693-706. MR 0326720 (48:5063)
  • [4] M. W. Hirsch, Immersion of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242-276. MR 22 #9980. MR 0119214 (22:9980)
  • [5] I. M. James, On the iterated suspension, Quart. J. Math. Oxford Ser. (2) 5 (1954), 1-10. MR 15, 891. MR 0061836 (15:891g)
  • [6] D. Sjerve, Geometric dimension of vector bundles over Lens spaces, Trans. Amer. Math. Soc. 134 (1968), 545-557. MR 38 #1695. MR 0233373 (38:1695)
  • [7] M. Spivak, Spaces satisfying Poincaré duality, Topology 6 (1967), 77-101. MR 35 #4923. MR 0214071 (35:4923)
  • [8] D. Sullivan, Geometric topology. Part I: Localization, periodicity, and Galois symmetry, MIT, June 1970, (mimeographed notes). MR 0494074 (58:13006a)
  • [9] W. A. Sutherland, Fiber homotopy equivalence and vector fields, Proc. London Math. Soc. (3) 15 (1965), 543-556. MR 31 #763. MR 0176491 (31:763)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57D40

Retrieve articles in all journals with MSC: 57D40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0341504-4
Keywords: Immersion, localization
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society