Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on subadditive functions


Author: James S. W. Wong
Journal: Proc. Amer. Math. Soc. 44 (1974), 106
MSC: Primary 26A12
DOI: https://doi.org/10.1090/S0002-9939-1974-0327985-0
MathSciNet review: 0327985
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A short proof is given for the following result: Let $ \phi $ be subadditive on $ (0,b)$ and $ \phi (t) < t,t \in (0,b)$. Then $ {\sup _{a \leqq t \leqq b}}\phi (t)/t < 1$ for $ 0 < a < b$.


References [Enhancements On Off] (What's this?)

  • [1] D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464. MR 39 #916. MR 0239559 (39:916)
  • [2] C. S. Wong, Subadditive functions, Pacific J. Math. 36 (1971), 549-551. MR 43 #4974. MR 0279251 (43:4974)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26A12

Retrieve articles in all journals with MSC: 26A12


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0327985-0
Keywords: Subadditive real functions
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society