Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Localizing equivariant bordism


Author: E. R. Wheeler
Journal: Proc. Amer. Math. Soc. 44 (1974), 485-491
MSC: Primary 57D85; Secondary 55B25
DOI: https://doi.org/10.1090/S0002-9939-1974-0345122-3
MathSciNet review: 0345122
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The unitary bordism of a finite group is computed up to torsion and an equivariant Rohlin exact sequence is exhibited for groups of odd order.


References [Enhancements On Off] (What's this?)

  • [1] P. E. Conner, ``Orientation preserving involutions", in Lectures on the action of a finite group, Lecture Notes in Math., no. 73, Springer-Verlag, Berlin and New York, 1968, Chap. 2. MR 41 #2670. MR 0258023 (41:2670)
  • [2] P. E. Connor and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Math. und ihrer Grenzgebiete, Band 33, Springer-Verlag, Berlin; Academic Press, New York, 1964. MR 31 #750.
  • [3] E. E. Floyd, Periodic maps via Smith theory, Ann. of Math. Studies, no. 46, Chapter III, Princeton Univ. Press, Princeton, N.J., 1960.
  • [4] E. Ossa, Unitary bordism of abelian groups, Proc. Amer. Math. Soc. 33 (1972), 568-571. MR 45 #2743. MR 0293666 (45:2743)
  • [5] R. E. Stong, Complex and oriented equivariant bordism, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 291-316. MR 42 #8521. MR 0273644 (42:8521)
  • [6] -, Notes on cobordism theory, Mathematical Notes, Princeton Univ. Press, Princeton, N.J.; Univ. of Tokyo Press, Tokyo, 1968. MR 40 #2108. MR 0248858 (40:2108)
  • [7] -, Unoriented bordism and actions of finite groups, Mem. Amer. Math. Soc., no. 103 (1970). MR 42 #8522. MR 0273645 (42:8522)
  • [8] E. R. Wheeler, The oriented bordism of cyclic groups, Dissertation, University of Virginia, Charlottesville, Va., 1973.
  • [9] J. A. Wolf, Spaces of constant curvature, Chapter 4, McGraw-Hill, New York, 1967. MR 36 #829. MR 0217740 (36:829)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57D85, 55B25

Retrieve articles in all journals with MSC: 57D85, 55B25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0345122-3
Keywords: Equivariant bordism group, Rohlin exact sequence
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society