Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Bounds for solutions of perturbed differential equations

Author: T. G. Proctor
Journal: Proc. Amer. Math. Soc. 45 (1974), 73-79
MSC: Primary 34D10; Secondary 34A10
MathSciNet review: 0344615
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A modified form of the Alekseev variation of constants equation is used to relate the solutions of systems of the form $ \dot x = f(t,x,\lambda ),\lambda $ in $ {R^m}$ and the perturbed system $ \dot y = f(t,y,\psi (t)) + g(t,y)$. Hypotheses are given on the $ m$ parameter family of differential equations $ \dot x = f(t,x,\lambda )$ so that if $ \dot \psi $ and $ g$ are perturbation functions, bounds can be calculated for the solutions of the perturbed system.

References [Enhancements On Off] (What's this?)

  • [1] V. M. Alekseev, An estimate for the perturbations of solutions of ordinary differential equations, Vestnik Moskov. Univ. Ser. I Mat. Meh. 1961, no. 2, 28-36. (Russian) MR 23 #A2596. MR 0125293 (23:A2596)
  • [2] F. Brauer, Perturbations of nonlinear systems of differential equations, J. Math. Anal. Appl. 14 (1966), 198-206. MR 33 #359. MR 0192132 (33:359)
  • [3] W. A. Coppel, Stability and asymptotic behavior of differential equations, Heath, Boston, Mass., 1965. MR 32 #7875. MR 0190463 (32:7875)
  • [4] R. E. Fennell and T. G. Proctor, Perturbations of nonlinear differential equations, Trans. Amer. Math. Soc. 185 (1973), 401-411. MR 0361309 (50:13754)
  • [5] R. K. Miller, Nonlinear Volterra integral equations, Benjamin, Menlo Park, California, 1971. MR 0511193 (58:23394)
  • [6] B. Noble, The numerical solution of nonlinear integral equations and related topics, Nonlinear Integral Equations (Proc. Advanced Seminar Conducted by Math. Research Center, U. S. Army., Univ. Wisconsin, Madison, Wis., 1963), Univ. Wisconsin Press, Madison, Wis., 1964, pp. 215-318. MR 30 #3582. MR 0173369 (30:3582)
  • [7] J. A. Nohel, Some problems in nonlinear Volterra integral equations, Bull. Amer. Math. Soc. 68 (1962), 323-329. MR 26 #2838. MR 0145307 (26:2838)
  • [8] T. G. Proctor, Periodic solutions for perturbed differential equations, J. Math. Anal. Appl. (to appear). MR 0432982 (55:5961)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34D10, 34A10

Retrieve articles in all journals with MSC: 34D10, 34A10

Additional Information

Keywords: Perturbed differential equations, Alekseev formula, bounds, comparison theorems, Volterra integral equations
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society