The DAD theorem for arbitrary row sums

Author:
Richard A. Brualdi

Journal:
Proc. Amer. Math. Soc. **45** (1974), 189-194

MSC:
Primary 15A48

MathSciNet review:
0354737

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given an symmetric nonnegative matrix and a positive vector , necessary and sufficient conditions are obtained in order that there exist a diagonal matrix with positive main diagonal such that *DAD* has row sum vector .

**[1]**Richard A. Brualdi, Seymour V. Parter, and Hans Schneider,*The diagonal equivalence of a nonnegative matrix to a stochastic matrix*, J. Math. Anal. Appl.**16**(1966), 31–50. MR**0206019****[2]**R. A. Brualdi,*Convex sets of non-negative matrices*, Canad. J. Math.**20**(1968), 144–157. MR**0219556****[3]**-,*Combinatorial properties of symmetric nonnegative matrices*, Proc. Internat. Conf. 'Combinatorial Theories' held in Rome, Sept. 3-15, 1973 (to appear).**[4]**J. Csima and B. N. Datta,*The 𝐷𝐴𝐷 theorem for symmetric non-negative matrices*, J. Combinatorial Theory Ser. A**12**(1972), 147–152. MR**0289538****[5]**Marvin Marcus and Henryk Minc,*A survey of matrix theory and matrix inequalities*, Allyn and Bacon, Inc., Boston, Mass., 1964. MR**0162808****[6]**Albert W. Marshall and Ingram Olkin,*Scaling of matrices to achieve specified row and column sums*, Numer. Math.**12**(1968), 83–90. MR**0238875****[7]**M. V. Menon,*Matrix links, an extremization problem, and the reduction of a non-negative matrix to one with prescribed row and column sums*, Canad. J. Math.**20**(1968), 225–232. MR**0220752****[8]**M. V. Menon and Hans Schneider,*The spectrum of a nonlinear operator associated with a matrix*, Linear Algebra and Appl.**2**(1969), 321–334. MR**0246893****[9]**Hazel Perfect and L. Mirsky,*The distribution of positive elements in doubly-stochastic matrices*, J. London Math. Soc.**40**(1965), 689–698. MR**0183021****[10]**Richard Sinkhorn and Paul Knopp,*Concerning nonnegative matrices and doubly stochastic matrices*, Pacific J. Math.**21**(1967), 343–348. MR**0210731****[11]**Richard Sinkhorn,*Diagonal equivalence to matrices with prescribed row and column sums. II*, Proc. Amer. Math. Soc.**45**(1974), 195–198. MR**0357434**, 10.1090/S0002-9939-1974-0357434-8

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
15A48

Retrieve articles in all journals with MSC: 15A48

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1974-0354737-8

Keywords:
Nonnegative matrix,
diagonal matrix,
symmetric matrix,
completely reducible,
completely decomposable,
row sum vector

Article copyright:
© Copyright 1974
American Mathematical Society