The DAD theorem for arbitrary row sums

Author:
Richard A. Brualdi

Journal:
Proc. Amer. Math. Soc. **45** (1974), 189-194

MSC:
Primary 15A48

DOI:
https://doi.org/10.1090/S0002-9939-1974-0354737-8

MathSciNet review:
0354737

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given an symmetric nonnegative matrix and a positive vector , necessary and sufficient conditions are obtained in order that there exist a diagonal matrix with positive main diagonal such that *DAD* has row sum vector .

**[1]**R. A. Brualdi, S. V. Parter and H. Schneider,*The diagonal equivalence of a nonnegative matrix to a stochastic matrix*, J. Math. Anal. Appl.**16**(1966), 31-50. MR**34**#5844. MR**0206019 (34:5844)****[2]**R. A. Brualdi,*Convex sets of non-negative matrices*, Canad. J. Math.**20**(1968), 144-157. MR**36**#2636. MR**0219556 (36:2636)****[3]**-,*Combinatorial properties of symmetric nonnegative matrices*, Proc. Internat. Conf. 'Combinatorial Theories' held in Rome, Sept. 3-15, 1973 (to appear).**[4]**J. Csima and B. N. Datta,*The DAD theorem for symmetric nonnegative matrices*, J. Combinatorial Theory Ser. A**12**(1972), 147-152. MR**44**#6726. MR**0289538 (44:6726)****[5]**M. Marcus and H. Minc,*A survey of matrix theory and matrix inequalities*, Allyn and Bacon, Boston, Mass., 1964, p. 130. MR**29**#112. MR**0162808 (29:112)****[6]**A. W. Marshall and I. Olkin,*Scaling of matrices to achieve specified row and column sums*, Numer. Math.**12**( 1968), 83-90. MR**39**#235. MR**0238875 (39:235)****[7]**M. V. Menon,*Matrix links, an extremization problem, and the reduction of a non-negative matrix to one with prescribed row and column sums*, Canad. J. Math.**20**(1968), 225-232. MR**36**#3804. MR**0220752 (36:3804)****[8]**M. V. Menon and H. Schneider,*The spectrum of a nonlinear operator associated with a matrix*, Linear Algebra and Appl.**2**(1969), 321-334. MR**40**#162. MR**0246893 (40:162)****[9]**H. Perfect and L. Mirsky,*The distribution of positive elements in doubly-stochastic matrices*, J. London Math. Soc.**40**(1965), 689-698. MR**32**#503. MR**0183021 (32:503)****[10]**R. Sinkhorn and P. Knopp,*Concerning nonnegative matrices and doubly stochastic matrices*, Pacific J. Math.**21**(1967), 343-348. MR**35**#1617. MR**0210731 (35:1617)****[11]**R. Sinkhorn,*Diagonal equivalence to matrices with prescribed row and column sums*. II, Proc. Amer. Math. Soc.**45**(1974), 195-198. MR**0357434 (50:9902)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
15A48

Retrieve articles in all journals with MSC: 15A48

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1974-0354737-8

Keywords:
Nonnegative matrix,
diagonal matrix,
symmetric matrix,
completely reducible,
completely decomposable,
row sum vector

Article copyright:
© Copyright 1974
American Mathematical Society