Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The heights of formal $ A$-modules


Author: William C. Waterhouse
Journal: Proc. Amer. Math. Soc. 46 (1974), 332-334
MSC: Primary 14L05
DOI: https://doi.org/10.1090/S0002-9939-1974-0347837-X
MathSciNet review: 0347837
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be a discrete valuation ring, finite over $ {{\mathbf{Z}}_p}$, acting on a commutative formal Lie group of height $ h$. Then $ h$ is a multiple of $ \vert A:{{\mathbf{Z}}_p}\vert$; and if $ A$ acts on the tangent space by scalar multiplications, the dimension of the group is at most $ h/\vert A:{{\mathbf{Z}}_p}\vert$.


References [Enhancements On Off] (What's this?)

  • [1] P. Cartier, Relèvement des groupes formels commutatifs, Séminaire Bourbaki: 1968/69, Exposé 359, Lecture Notes in Math., vol. 179, Springer-Verlag, Berlin and New York, 1971. MR 42 #7460.
  • [2] M. Demazure, Lectures on $ p$-divisible groups, Lecture Notes in Math., vol. 302, Springer-Verlag, New York, 1972. MR 0344261 (49:9000)
  • [3] J. Dieudonné, Lie groups and Lie hyperalgebras over a field of characteristic $ p > 0$. IV, Amer. J. Math. 77 (1955), 429-452. MR 17, 174. MR 0071718 (17:174c)
  • [4] J. Lubin, One-parameter formal Lie groups over $ \mathfrak{p}$-adic integer rings, Ann. of Math. (2) 80 (1964), 464-484. MR 29 #5827. MR 0168567 (29:5827)
  • [5] -, Formal $ A$-modules defined over $ A$, Symposia Mathematica, Vol. III (INDAM, Rome, 1968/69), Academic Press, London, 1970, pp. 241-245. MR 42 #260.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14L05

Retrieve articles in all journals with MSC: 14L05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0347837-X
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society