Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A characterization of hypoelliptic differential operators with variable coefficients


Author: R. E. White
Journal: Proc. Amer. Math. Soc. 46 (1974), 375-382
MSC: Primary 35H05
DOI: https://doi.org/10.1090/S0002-9939-1974-0358059-0
MathSciNet review: 0358059
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ P$ be a linear differential operator with coefficients in $ {C^\infty }(\Omega )$ where $ \Omega \subset {{\mathbf{R}}^n}$. We characterize the hypoelliptic operators in terms of the $ \ast $-hypoelliptic operators. $ P$ is defined to be $ \ast $-hypoelliptic on $ \Omega $ if and only if $ u \in {\mathcal{D}'_F}(\Omega )$ and $ Pu \in {C^\infty }(\Omega )$ imply $ u \in {C^\infty }(\Omega )$. We characterize the $ \ast $-hypoelliptic operators via a priori estimates. We prove $ P$ is hypoelliptic on $ \Omega $ if and only if for $ u \in \mathcal{D}'(\Omega )$ and $ Pu \in {C^\infty }(\Omega ')$ with $ \Omega ' \subset \Omega $, there exists for each $ {x_0} \in \Omega '$ a relatively compact open neighborhood $ {\Omega _{{x_0}}} \subset \Omega '$ of $ {x_0}$ such that $ P$ is $ \ast $-hypoelliptic on $ {\Omega _{{x_0}}}$.


References [Enhancements On Off] (What's this?)

  • [1] V. S. Fediĭ, On a criterion for hypoellipticity, Mat. Sb. 85 (127) (1971), 18-48 = Math. USSR Sb. 14 (1971), 15-46. MR 44 #4367. MR 0287160 (44:4367)
  • [2] L. Hörmander, On the theory of general partial differential operators, Acta Math. 94 (1955), 161-248. MR 17, 853. MR 0076151 (17:853d)
  • [3] -, On interior regularity of the solutions of partial differential equations, Comm. Pure Appl. Math. 11 (1958), 197-218. MR 21 #5064. MR 0106330 (21:5064)
  • [4] L. Hörmander, Linear partial differential operators, Die Grundlehren der math. Wissenschaften, Band 116, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #4221.
  • [5] B. Malgrange, Sur une classe d'opérateurs différentiels hypoelliptiques, Bull. Soc. Math. France 85 (1957), 283-306. MR 21 #5063. MR 0106329 (21:5063)
  • [6] J. Nieto, Eine Charakterisierung der elliptischen Differentialoperatoren, Math. Ann. 141 (1960), 22-42. MR 22 #6933. MR 0116138 (22:6933)
  • [7] J. Peetre, Elliptic partial differential equations of higher order, University of Maryland, Lecture Series, no. 40, College Park, Md., 1962.
  • [8] L. Schwartz, Théorie des distribution. Tomes I, II, Actualités Sci. Indust., nos. 1091, 1122, Hermann, Paris, 1950, 1951. MR 12, 31; 833.
  • [9] F. Treves, Topological vector spaces, distributions and kernels, Academic Press, New York, 1967. MR 37 #726. MR 0225131 (37:726)
  • [10] H. Weyl, The method of orthogonal projection in potential theory, Duke Math. J. 7 (1940), 411-444. MR 2, 202. MR 0003331 (2:202a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35H05

Retrieve articles in all journals with MSC: 35H05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0358059-0
Keywords: Hypoelliptic on $ \Omega $, $ \ast $-hypoelliptic on $ \Omega $, Fréchet space, open mapping theorem, local on $ \Omega $, $ \ast $-local on $ \Omega $, inductive limit
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society