Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Direct product decomposition of alternative rings


Authors: Hyo Chul Myung and Luis R. Jimenez
Journal: Proc. Amer. Math. Soc. 47 (1975), 53-60
DOI: https://doi.org/10.1090/S0002-9939-1975-0354796-3
MathSciNet review: 0354796
Full-text PDF

Abstract | References | Additional Information

Abstract: It is shown that any alternative ring $ A$ equipped with the relation $ \leqslant $, defined by $ x \leqslant y$ if and only if $ xy = {x^2}$, is isomorphic to a direct product of alternative division rings if and only if the relation $ \leqslant $ is a partial order on $ A$ such that $ A$ is hyperatomic and orthogonally complete.


References [Enhancements On Off] (What's this?)

  • [1] A. Abian, Direct product decomposition of commutative semisimple rings, Proc. Amer. Math. Soc. 24 (1970), 502-507. MR 41 #3461. MR 0258815 (41:3461)
  • [2] A. Abian, Order relation in rings without nilpotent elements (preprint). MR 0498674 (58:16759)
  • [3] R. H. Bruck and E. Kleinfeld, The structure of alternative division rings, Proc. Amer. Math. Soc. 2 (1951), 878-890. MR 13, 526. MR 0045099 (13:526e)
  • [4] M. Chacron, Direct product of division rings and a paper of Abian, Proc. Amer. Math. Soc. 29 (1971), 259-262. MR 43 #275. MR 0274512 (43:275)
  • [5] I. R. Hentzel, Alternative rings without nilpotent elements, Proc. Amer. Math. Soc. 42 (1974), 373-376. MR 0327858 (48:6200)
  • [6] E. Kleinfeld, A characterization of the Cayley number, Studies in Modern Algebra, edited by A. A. Albert, Math. Assoc. Amer., 1963, pp. 126-143.
  • [7] -, Right alternative rings, Proc. Amer. Math. Soc. 4 (1953), 939-944. MR 15, 595. MR 0059888 (15:595j)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0354796-3
Keywords: Alternative ring, nilpotent element, direct product, hyperatom, orthogonal complete
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society