Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A spectral condition determining the Kaehler property


Author: Harold Donnelly
Journal: Proc. Amer. Math. Soc. 47 (1975), 187-194
DOI: https://doi.org/10.1090/S0002-9939-1975-0355914-3
MathSciNet review: 0355914
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: We prove that the spectrum of the reduced complex Laplacian determines if a Hermitian manifold is Kaehler.


References [Enhancements On Off] (What's this?)

  • [1] Marcel Berger, Eigenvalues of the Laplacian, Global Analysis (Proc. Sympos. Pure Math., Vol. XVI, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 121–125. MR 0264549
  • [2] Harold Donnelly, Minakshisundaram's coefficients on Kaehler manifolds, Proc. Sympos. Pure Math., vol. 27, Amer. Math. Soc., Providence, R. I. (to appear).
  • [3] Peter B. Gilkey, Spectral geometry and the Kaehler condition for complex manifolds, Invent. Math. 26 (1974), 231–258. MR 0346849, https://doi.org/10.1007/BF01418951
  • [4] V. K. Patodi, An analytic proof of Riemann-Roch-Hirzebruch theorem for Kaehler manifolds, J. Differential Geometry 5 (1971), 251–283. MR 0290318
  • [5] V. K. Patodi, Curvature and the eigenforms of the Laplace operator, J. Differential Geometry 5 (1971), 233–249. MR 0292114
  • [6] E. Vesentini, Lectures on Levi convexity of complex manifolds and cohomology vanishing theorems, Notes by M. S. Raghunathan. Tata Institute of Fundamental Research Lectures on Mathematics, No. 39, Tata Institute of Fundamental Research, Bombay, 1967. MR 0232016


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0355914-3
Article copyright: © Copyright 1975 American Mathematical Society