Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the condition $ c^T A^{-1} b + r > 0$, in the Lurie problem


Author: Alfredo S. Somolinos
Journal: Proc. Amer. Math. Soc. 47 (1975), 432-441
MSC: Primary 34D25; Secondary 34H05
DOI: https://doi.org/10.1090/S0002-9939-1975-0357998-5
MathSciNet review: 0357998
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The problem of Lurie consists in finding NASC's for all solutions of the system $ \{ x' = Ax + bf(\sigma ),\sigma ' = {c^T}x - rf(\sigma )\} $ to tend to zero as $ t \to \infty $ under appropriate conditions on the functions involved. When $ f(\sigma )/\sigma < M$, for all $ \sigma $ and a certain $ M$, we obtain NASC's for the system to be absolutely stable. When $ f(\sigma )/\sigma < M$ as $ \vert\sigma \vert \to \infty $, we obtain conditions for ultimate uniform boundedness of the solutions of the system.


References [Enhancements On Off] (What's this?)

  • [1] J. P. LaSalle, Complete stability of a nonlinear control system, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 600-603. MR 25 #304. MR 0136843 (25:304)
  • [2] -, Stability theory for ordinary differential equations, J. Differential Equations 4 (1968), 57-65. MR 36 #5454. MR 0222402 (36:5454)
  • [3] J. P. LaSalle and S. Lefschetz, Stability by Liapunov's direct method, with applications, Math. in Sci. and Engineering, vol. 4, Academic Press, New York, 1961. MR 24 #A2712.
  • [4] S. Lefschetz, Stability of nonlinear control systems, Math. in Sci. and Engineering, vol. 13, Academic Press, New York, 1965. MR 30 #5860. MR 0175676 (30:5860)
  • [5] T. A. Burton, A differential equation of Lurie type, Proc. Amer. Math. Soc. 36 (1972), 491-496. MR 46 #9435. MR 0310334 (46:9435)
  • [6] M. A. Aľzermann and F. R. Gantmaher, Absolute stability of regulator systems, Izdat. Akad. Nauk SSSR, Moscow, 1963; English transl., Holden-Day, San Francisco, Calif., 1964. MR 32 #1036. MR 0183556 (32:1036)
  • [7] T. Yoshizawa, Stability theory by Liapunov's second method, Publ. Math. Soc. Japan, no. 9, Math. Soc. Japan, Tokyo, 1966. MR 34 #7896. MR 0208086 (34:7896)
  • [8] A. Halanay, Differential equations: Stability, oscillations, time lags, Academic Press, New York, 1966. MR 35 #6938. MR 0216103 (35:6938)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34D25, 34H05

Retrieve articles in all journals with MSC: 34D25, 34H05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0357998-5
Keywords: Differential equations, control theory, boundedness of solutions, absolute stability, problem of Lurie
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society