Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A uniform set covering lemma


Author: David W. Matula
Journal: Proc. Amer. Math. Soc. 48 (1975), 255-261
MSC: Primary 05B40
DOI: https://doi.org/10.1090/S0002-9939-1975-0376408-5
MathSciNet review: 0376408
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The bounded set system $ H = (V,\mathfrak{F})$ is composed of a nonvoid set $ V$ and a set, $ \mathfrak{F}$, of nonvoid subsets of $ V$, a finite number of which cover $ V$. $ C \subset V$ is a critical subset of $ H$ if every proper subset of $ C$ requires fewer members of $ \mathfrak{F}$ to cover it than are needed to cover $ C$. For $ \vert\mathfrak{F}\vert$ finite, it is shown that every $ A \subset V$ contains a critical $ C \subset A$ requiring the same number of members of $ \mathfrak{F}$ in a minimum cover. For $ v \in V,l(v)$ is the largest number of members of $ \mathfrak{F}$ in any minimum cover of any critical set containing $ v$. For $ \vert\mathfrak{F}\vert$ finite, it is shown that there exists a covering $ {A_1},{A_2}, \cdots ,{A_k},{A_i} \in \mathfrak{F}$ for $ 1 \leq i \leq k$, such that $ v \in \bigcup\nolimits_{i = 1}^{l(v)} {{A_i}} $ for all $ v \in V$. An application to graph coloring is described.


References [Enhancements On Off] (What's this?)

  • [1] C. Berge, Graphes et hypergraphes, Dunod, Paris, 1970. MR 0357173 (50:9641)
  • [2] G. A. Dirac, The structure of $ k$-chromatic graphs, Fund. Math. 40 (1953), 42-55. MR 15, 640. MR 0060207 (15:640a)
  • [3] R. M. Karp, Reducibility among combinatorial problems, Complexity of Computer Computations, R. E. Miller and J. W. Thatcher (editors), Plenum, New York, 1972, pp. 85-103. MR 0378476 (51:14644)
  • [4] D. W. Matula, Bounded color functions on graphs, Networks 2 (1972/73), 29-44. MR 45 #6681. MR 0297627 (45:6681)
  • [5] O. Ore, The four color problem, Pure and Appl. Math., vol. 27, Academic Press, New York, 1967. MR 36 #74. MR 0216979 (36:74)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 05B40

Retrieve articles in all journals with MSC: 05B40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0376408-5
Keywords: Set coverings, critical sets, minimum covers, uniform cover, hypergraph, graph covering, Grundy function
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society