On a uniqueness problem in the theory of linear integral equations

Author:
Robert R. Stevens

Journal:
Proc. Amer. Math. Soc. **49** (1975), 95-103

MSC:
Primary 45A05; Secondary 26A42

DOI:
https://doi.org/10.1090/S0002-9939-1975-0387987-6

MathSciNet review:
0387987

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The primary purpose of this paper is to give sufficient conditions for a function which ensure that if a.e. in then the function is zero almost everywhere in . Several applications are given.

**[1]**M. A. Evgrafov,*Analytic functions*, Translated from the Russian by Scripta Technica, Inc. Translation edited by Bernard R. Gelbaum, W. B. Saunders Co., Philadelphia, Pa.-London, 1966. MR**0197686****[2]**E. W. Hobson,*The theory of functions of a real variable and the theory of Fourier series*. Vols. I, II, Cambridge Univ. Press, New York, 1927; reprint, Dover, New York, 1958. MR**19**, 1166.**[3]**H. L. Royden,*Real analysis*, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1963. MR**0151555****[4]**Giovanni Sansone and Johan Gerretsen,*Lectures on the theory of functions of a complex variable. I. Holomorphic functions*, P. Noordhoff, Groningen, 1960. MR**0113988****[5]**Minoru Urabe,*Potential forces which yield periodic motions of a fixed period*, J. Math. Mech.**10**(1961), 569–578. MR**0123060****[6]**G. N. Watson,*A treatise on the theory of Bessel functions*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR**1349110****[7]**E. T. Whittaker and G. N. Watson,*A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions: with an account of the principal transcendental functions*, Fourth edition. Reprinted, Cambridge University Press, New York, 1962. MR**0178117**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
45A05,
26A42

Retrieve articles in all journals with MSC: 45A05, 26A42

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1975-0387987-6

Article copyright:
© Copyright 1975
American Mathematical Society