Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

On a uniqueness problem in the theory of linear integral equations


Author: Robert R. Stevens
Journal: Proc. Amer. Math. Soc. 49 (1975), 95-103
MSC: Primary 45A05; Secondary 26A42
MathSciNet review: 0387987
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The primary purpose of this paper is to give sufficient conditions for a function $ G$ which ensure that if $ \int_0^1 {f(xt)G(t)dt = 0} $ a.e. in $ (0, 1)$ then the function $ f$ is zero almost everywhere in $ (0, 1)$. Several applications are given.


References [Enhancements On Off] (What's this?)

  • [1] M. A. Evgrafov, Analytic functions, Translated from the Russian by Scripta Technica, Inc. Translation edited by Bernard R. Gelbaum, W. B. Saunders Co., Philadelphia, Pa.-London, 1966. MR 0197686 (33 #5849)
  • [2] E. W. Hobson, The theory of functions of a real variable and the theory of Fourier series. Vols. I, II, Cambridge Univ. Press, New York, 1927; reprint, Dover, New York, 1958. MR 19, 1166.
  • [3] H. L. Royden, Real analysis, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1963. MR 0151555 (27 #1540)
  • [4] Giovanni Sansone and Johan Gerretsen, Lectures on the theory of functions of a complex variable. I. Holomorphic functions, P. Noordhoff, Groningen, 1960. MR 0113988 (22 #4819)
  • [5] Minoru Urabe, Potential forces which yield periodic motions of a fixed period, J. Math. Mech. 10 (1961), 569–578. MR 0123060 (23 #A391)
  • [6] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR 1349110 (96i:33010)
  • [7] E. T. Whittaker and G. N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions: with an account of the principal transcendental functions, Fourth edition. Reprinted, Cambridge University Press, New York, 1962. MR 0178117 (31 #2375)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 45A05, 26A42

Retrieve articles in all journals with MSC: 45A05, 26A42


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1975-0387987-6
PII: S 0002-9939(1975)0387987-6
Article copyright: © Copyright 1975 American Mathematical Society