Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Nonlinear Volterra integral equations with positive definite kernels


Author: Olof J. Staffans
Journal: Proc. Amer. Math. Soc. 51 (1975), 103-108
MSC: Primary 45D05
DOI: https://doi.org/10.1090/S0002-9939-1975-0370081-8
MathSciNet review: 0370081
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Conditions are given for the asymptotic stability of the solution of a nonlinear Volterra integro-differential equation with convolution kernel. These conditions are less restrictive than most of the known ones for this equation.


References [Enhancements On Off] (What's this?)

  • [1] C. Corduneanu, Sur une équation intégrale de la theorie du réglage automatique, C. R. Acad. Sci. Paris 256 (1963), 3564-3567. MR 27 #6100. MR 0156169 (27:6100)
  • [2] A. Halanay, On the asymptotic behavior of the solutions of an integro-differential equation, J. Math. Anal. Appl. 10 (1965), 319-324. MR 31 #579. MR 0176304 (31:579)
  • [3] J. K. Hale, Sufficient conditions for stability and instability of autonomous functional-differential equations, J. Differential Equations 1 (1965), 452-482. MR 32 #1414. MR 0183938 (32:1414)
  • [4] K. B. Hannsgen, On a nonlinear Volterra equation, Michigan Math. J. 16 (1969), 365-376. MR 40 #3225. MR 0249984 (40:3225)
  • [5] J. J. Levin and J. A. Nohel, On a nonlinear delay equation, J. Math. Anal. Appl. 8 (1964), 31-44. MR 29 #445. MR 0163142 (29:445)
  • [6] -, Perturbations of a nonlinear Volterra equation, Michigan Math. J. 12 (1965), 431-447. MR 32 #336. MR 0182854 (32:336)
  • [7] J. J. Levin and D. F. Shea, On the asymptotic behavior of the bounded solutions of some integral equations. I, II, III, J. Math. Anal. Appl. 37 (1972), 42-82; 288-326; 537-575. MR 46 #5971. MR 0306849 (46:5971)
  • [8] S.-O. Londen, The qualitative behavior of the solutions of a nonlinear Volterra equation, Michigan Math. J. 18 (1971), 321-330. MR 45 #2431. MR 0293354 (45:2431)
  • [9] -, On the variation of the solutions of a nonlinear integral equation, J. Math. Anal. Appl. (to appear). MR 0420177 (54:8192)
  • [10] R. C. MacCamy and J. S. W. Wong, Stability theorems for some functional equations, Trans. Amer. Math. Soc. 164 (1972), 1-37. MR 45 #2432. MR 0293355 (45:2432)
  • [11] R. K. Miller, Asymptotic behavior of nonlinear delay-differential equations, J. Differential Equations 1 (1965), 293-305. MR 31 #2521. MR 0178263 (31:2521)
  • [12] J. A. Nohel and D. F. Shea, Frequency domain methods for Volterra equations, Advances in Math. (to appear). MR 0500024 (58:17748)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 45D05

Retrieve articles in all journals with MSC: 45D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0370081-8
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society