Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On matrix approximation


Author: Shmuel Friedland
Journal: Proc. Amer. Math. Soc. 51 (1975), 41-43
MSC: Primary 65F35; Secondary 15A60, 41A65
DOI: https://doi.org/10.1090/S0002-9939-1975-0371052-8
MathSciNet review: 0371052
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we give an algebraic characterization of the best approximants to a given matrix $ A$ from a real line spanned by a matrix $ B$. The distance $ \vert\vert A - \alpha B\vert\vert$ is taken to be the spectral norm of $ A - \alpha B$.


References [Enhancements On Off] (What's this?)

  • [1] Ioan A. Rus, Un principe du maximum pour les solutions d’un système fortement elliptique, Glasnik Mat. Ser. III 4 (24) (1969), 75–78 (French, with Serbo-Croatian summary). MR 0240444

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 65F35, 15A60, 41A65

Retrieve articles in all journals with MSC: 65F35, 15A60, 41A65


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0371052-8
Keywords: Matrix approximation, spectral norm, polynomial equations, the greatest common divisor, discriminant
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society