Analytic Toeplitz operators with automorphic symbol

Author:
M. B. Abrahamse

Journal:
Proc. Amer. Math. Soc. **52** (1975), 297-302

MSC:
Primary 47B35

DOI:
https://doi.org/10.1090/S0002-9939-1975-0405156-8

MathSciNet review:
0405156

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let denote the annulus and let be a holomorphic universal covering map from the unit disk onto . It is shown that if is a function of an inner function , that is, if , then is a linear fractional transformation. However, the analytic Toeplitz operator has nontrivial reducing subspaces. These facts answer in the negative a question raised by Nordgren [10]. Let be the function and let be the inner-outer factorization of . An operator is produced which commutes with but does not commute with nor with . This answers in the negative a question raised by Deddens and Wong [7]. The functions and are both automorphic under the group of covering transformations for and hence may be viewed as functions on the annulus . This point of view is critical in these examples.

**[1]**M. B. Abrahamse,*Toeplitz operators in multiply connected regions*, Bull. Amer. Math. Soc.**77**(1971), 449–454. MR**0273435**, https://doi.org/10.1090/S0002-9904-1971-12734-9**[2]**M. B. Abrahamse and R. G. Douglas,*A class of subnormal operators related to multiply-connected domains*, Advances in Math.**19**(1976), no. 1, 106–148. MR**0397468**, https://doi.org/10.1016/0001-8708(76)90023-2**[3]**M. B. Abrahamse and Thomas L. Kriete,*The spectral multiplicity of a multiplication operator*, Indiana Univ. Math. J.**22**(1972/73), 845–857. MR**0320797**, https://doi.org/10.1512/iumj.1973.22.22072**[4]**Lars V. Ahlfors,*Bounded analytic functions*, Duke Math. J.**14**(1947), 1–11. MR**0021108****[5]**I. N. Baker, J. A. Deddens and J. L. Ullman,*Entire Toeplitz operators*(to appear).**[6]**Joseph A. Ball,*Hardy space expectation operators and reducing subspaces*, Proc. Amer. Math. Soc.**47**(1975), 351–357. MR**0358421**, https://doi.org/10.1090/S0002-9939-1975-0358421-7**[7]**James A. Deddens and Tin Kin Wong,*The commutant of analytic Toeplitz operators*, Trans. Amer. Math. Soc.**184**(1973), 261–273. MR**0324467**, https://doi.org/10.1090/S0002-9947-1973-0324467-0**[8]**R. G. Douglas and Carl Pearcy,*Spectral theory of generalized Toeplitz operators*, Trans. Amer. Math. Soc.**115**(1965), 433–444. MR**0199706**, https://doi.org/10.1090/S0002-9947-1965-0199706-5**[9]**Kenneth Hoffman,*Banach spaces of analytic functions*, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962. MR**0133008****[10]**Eric A. Nordgren,*Reducing subspaces of analytic Toeplitz operators*, Duke Math. J.**34**(1967), 175–181. MR**0216321****[11]**Donald Sarason,*The 𝐻^{𝑝} spaces of an annulus*, Mem. Amer. Math. Soc. No.**56**(1965), 78. MR**0188824****[12]**Michael Voichick,*Ideals and invariant subspaces of analytic functions*, Trans. Amer. Math. Soc.**111**(1964), 493–512. MR**0160920**, https://doi.org/10.1090/S0002-9947-1964-0160920-5

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47B35

Retrieve articles in all journals with MSC: 47B35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1975-0405156-8

Keywords:
Toeplitz operator,
automorphic function,
universal covering map

Article copyright:
© Copyright 1975
American Mathematical Society