Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The derivative of a bounded holomorphic function in the disk


Author: Shinji Yamashita
Journal: Proc. Amer. Math. Soc. 53 (1975), 60-64
MSC: Primary 30A72
DOI: https://doi.org/10.1090/S0002-9939-1975-0377061-7
MathSciNet review: 0377061
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let a nonconstant function $ f$ be holomorphic and bounded, $ \vert f\vert < 1$ in $ D:\vert z\vert < 1$. We shall estimate $ {f^{\ast}}(z) = (1 - \vert z{\vert^2})\vert f'(z)\vert/(1 - \vert f(z){\vert^2})$ at each point $ z\epsilon D$ ((1) in Theorem 1). The function $ d$ appearing in the estimate concerns the sizes of the schlicht disks on the Riemannian image $ \mathcal{F}$ of $ D$ by $ f$. Boundary properties of $ f$ and $ {f^{\ast}}$ will be stated in Theorems 2 and 3; use is made of the cluster sets of $ d$.


References [Enhancements On Off] (What's this?)

  • [1] Frederick Bagemihl, Some approximation theorems for normal functions, Ann. Acad. Sci. Fenn. Ser. A I No. 335 (1963), 5 pp. MR 28 #2219. MR 0158999 (28:2219)
  • [2] Edward F. Collingwood and Arthur J. Lohwater, The theory of cluster sets, Cambridge Tracts in Math. and Math. Phys., no. 56, Cambridge Univ. Press, Cambridge, 1966. MR 38 #325. MR 0231999 (38:325)
  • [3] Jean Dieudonné, Recherches sur quelques problèmes relatifs aux polynomes et aux fonctions bornées d'une variable complexe, Ann. Sci. École Norm. Sup. 48 (1931), 247-358. MR 1509314
  • [4] Frederick W. Gehring, On the radial order of subharmonic functions, J. Math. Soc. Japan 9 (1957), 77-79. MR 19, 131. MR 0086139 (19:131e)
  • [5] Maurice Heins, Selected topics in the classical theory of functions of a complex variable, Athena Series: Selected Topics in Math., Holt, Rinehart and Winston, New York, 1962. MR 29 #217. MR 0162913 (29:217)
  • [6] Peter A. Lappan, A property of angular cluster sets, Proc. Amer. Math. Soc. 19 (1968), 1060-1062. MR 37 #6462. MR 0230904 (37:6462)
  • [7] Christian Pommerenke, On Bloch functions, J. London Math. Soc. (2) 2 (1970), 689-695. MR 44 #1799. MR 0284574 (44:1799)
  • [8] Masatsugu Tsuji, Potential theory in modern function theory, Maruzen, Tokyo, 1959. MR 22 #5712. MR 0114894 (22:5712)
  • [9] Shinji Yamashita, Function-theoretic metrics and boundary behaviour of functions meromorphic or holomorphic in the unit disk, Nagoya Math. J. 45 (1972), 109-117. MR 46 #5625. MR 0306499 (46:5625)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A72

Retrieve articles in all journals with MSC: 30A72


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0377061-7
Keywords: Riemannian image, schlicht disks, non-Euclidean distance, the lemma of Schwarz and Pick, cluster sets
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society