On the closure-preserving sum theorem

Authors:
M. K. Singal and Shashi Prabha Arya

Journal:
Proc. Amer. Math. Soc. **53** (1975), 518-522

MSC:
Primary 54B99

DOI:
https://doi.org/10.1090/S0002-9939-1975-0383335-6

MathSciNet review:
0383335

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The closure-preserving sum theorem holds for a property if the following is satisfied: ``if is a hereditarily closure-preserving closed covering of such that each possesses the property , then possesses ". A general technique for proving this theorem is developed. The theorem is shown to hold for a large number of topological properties. As an application, three general sum theorems have also been obtained.

**[1]**C. E. Aull,*Paracompact subsets*, General Topology and its Relations to Modern Analysis and Algebra, II (Proc. Second Prague Topological Sympos., 1966) Academia, Prague, 1967, pp. 45–51. MR**0234420****[2]**R. H. Bing,*Metrization of topological spaces*, Canadian J. Math.**3**(1951), 175–186. MR**0043449****[3]**Carlos J. R. Borges,*On stratifiable spaces*, Pacific J. Math.**17**(1966), 1–16. MR**0188982****[4]**-,*Stratifiable spaces and continuous extensions*, Topology Conf., Arizona State University, Tempe, Ariz., 1967, pp. 37-54.**[5]**Dennis K. Burke,*On subparacompact spaces*, Proc. Amer. Math. Soc.**23**(1969), 655–663. MR**0250269**, https://doi.org/10.1090/S0002-9939-1969-0250269-4**[6]**G. D. Creede,*Semi-stratifiable spaces*, Topology Conf., Arizona State University, Tempe, Ariz., 1967, pp. 318-323.**[7]**S. P. Franklin,*Spaces in which sequences suffice*, Fund. Math.**57**(1965), 107–115. MR**0180954**, https://doi.org/10.4064/fm-57-1-107-115**[8]**Horst Herrlich,*Quotienten geordneter Räume und Folgenkonvergenz*, Fund. Math.**61**(1967), 79–81 (German). MR**0221476**, https://doi.org/10.4064/fm-61-1-79-81**[9]**R. C. Moore and S. G. Mrowka,*Topologies determined by countable objects*, Notices Amer. Math. Soc.**11**(1964), 554. Abstract #614-88.**[10]**Akihiro Okuyama,*Some generalizations of metric spaces, their metrization theorems and product spaces*, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A**9**(1968), 236–254 (1968). MR**0230283****[11]**M. K. Singal and Shashi Prabha Arya,*Two sum theorems for topological spaces*, Israel J. Math.**8**(1970), 155–158. MR**0263007**, https://doi.org/10.1007/BF02771310**[12]**Shashi Prabha Arya and M. K. Singal,*More sum theorems for topological spaces*, Pacific J. Math.**59**(1975), no. 1, 1–7. MR**0388332****[13]**M. K. Singal and Shashi Prabha Arya,*A note on the locally finite sum theorem*, Mathematika**19**(1972), 121–127. MR**0320978**, https://doi.org/10.1112/S0025579300005040**[14]**M. K. Singal and Pushpa Jain,*𝑚-subparacompact spaces*, Jñānabha Sect. A**2**(1972), 143–158. MR**0365484**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54B99

Retrieve articles in all journals with MSC: 54B99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1975-0383335-6

Keywords:
Closure-preserving,
hereditarily closure-preserving,
strongly hereditarily closure-preserving,
-locally finite,
-hereditarily closure-preserving,
-strongly hereditarily closure-preserving

Article copyright:
© Copyright 1975
American Mathematical Society