Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A lattice theoretic characterization of an integral operator


Author: Lawrence Lessner
Journal: Proc. Amer. Math. Soc. 53 (1975), 391-395
MSC: Primary 47B55
DOI: https://doi.org/10.1090/S0002-9939-1975-0402533-6
MathSciNet review: 0402533
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We are concerned here with obtaining necessary and sufficient conditions for a linear operator, $ K:\mathcal{L}({{\text{X}}_1},\;{\mathcal{A}_1},\;{\mu _1}) \to M({{\text{X}}_2},\;{\mathcal{A}_2},\;{\mu _2})$, to be represented by an integral, $ K(f) = \smallint k(x,\;y)f(y)\;dy$, with an $ {\mathcal{A}_2} \times {\mathcal{A}_1}$ measurable kernel $ k(x,\;y)$. That such conditions are developed in a lattice theoretic context will be shown to be quite natural. Our direction will be to characterize an integral operator by its action pointwise: i.e., $ K()(x)$ is a linear functional on a subspace of the essentially bounded functions. Such a development leads one to define the kernel, $ k(x,\;y)$, in a pointwise fashion also, and as a result we are confronted with the question of the $ {\mathcal{A}_2} \times {\mathcal{A}_1}$ measurability of $ k(x,\;y)$.


References [Enhancements On Off] (What's this?)

  • [1] W. A. J. Luxemburg and A. C. Zaanen, Riesz spaces, North-Holland, Amsterdam, 1971.
  • [2] B. Z. Vulih, Introduction to the theory of partially ordered spaces, Fizmatgiz, Moscow, 1961; English transl., Noordhoff, Groningen, 1967. MR 24 #A3494; 37 #121. MR 0224522 (37:121)
  • [3] N. Dunford and J. T. Schwartz, Linear operators. I. General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [4] N. Aronszajn and P. Szeptyski, On general integral transformations, Math. Ann. 163 (1966), 127-154. MR 32 #8209. MR 0190799 (32:8209)
  • [5] J. L. Doob, Stochastic processes, Wiley, New York; Chapman & Hall, London, 1953. MR 15, 445. MR 0058896 (15:445b)
  • [6] A. Ionescu Tulcea and C. Ionescu Tulcea, Topics in the theory of lifting, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 48, Springer-Verlag, New York, 1969. MR 43 #2185. MR 0276438 (43:2185)
  • [7] W. A. J. Luxemburg and A. C. Zaanen, The linear modulus of an order bounded linear transformation. II, Nederl. Akad. Wetensch. Proc. Ser. A75 = Indag. Math. 34 (1972). MR 0303338 (46:2475b)
  • [8] A. C. Zaanen, Linear analysis, North-Holland, Amsterdam, 1964.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B55

Retrieve articles in all journals with MSC: 47B55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0402533-6
Keywords: Integral operator, lift, Riesz space
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society