Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The commutants of certain analytic Toeplitz operators


Author: James E. Thomson
Journal: Proc. Amer. Math. Soc. 54 (1976), 165-169
DOI: https://doi.org/10.1090/S0002-9939-1976-0388156-7
MathSciNet review: 0388156
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: In this paper we characterize the commutants of two classes of analytic Toeplitz operators. We show that if $ F$ in $ {H^\infty }$ is univalent and nonvanishing, the $ \{ {T_{{F^2}}}\} ' = \{ {T_z}\} '$. When $ \varphi $ is the product of two Blaschke factors, we characterize $ \{ {T_\varphi }\} '$ in terms of algebraic combinations of Toeplitz and composition operators.


References [Enhancements On Off] (What's this?)

  • [1] I. N. Baker, J. A. Deddens and J. L. Ullman, A theorem on entire functions with applications to Toeplitz operators, Duke Math. J. 41 (1974), 739-745. MR 0355046 (50:7523)
  • [2] A. Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/64), 89-102. MR 28#3350; 30, p. 1205. MR 0160136 (28:3350)
  • [3] J. A. Deddens and T. K. Wong, The commutant of analytic Toeplitz operators, Trans. Amer. Math. Soc. 184 (1973), 261-273. MR 0324467 (48:2819)
  • [4] R. G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York, 1972. MR 0361893 (50:14335)
  • [5] P. Duren, Theory of $ {H^p}$ spaces, Academic Press, New York, 1970. MR 42#3552. MR 0268655 (42:3552)
  • [6] E. Nordgren, Reducing subspaces of analytic Toeplitz operators, Duke Math. J. 34 (1967), 175-181. MR 35#7155. MR 0216321 (35:7155)
  • [7] J. Ryff, Subordinate $ {H^p}$ functions, Duke Math. J. 33 (1966), 347-354. MR 33#289. MR 0192062 (33:289)
  • [8] J. E. Thomson, Intersections of commutants of analytic Toeplitz operators, Proc. Amer. Math. Soc. 52 (1975), 305-310. MR 0399927 (53:3765)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0388156-7
Keywords: Analytic function, inner function, $ {H^\infty }$, $ {H^2}$, analytic Toeplitz operator, commutant
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society