Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the behavior of meromorphic functions at the ideal boundary of a Riemann surface

Author: J. L. Schiff
Journal: Proc. Amer. Math. Soc. 54 (1976), 130-132
MathSciNet review: 0390209
Full-text PDF

Abstract | References | Additional Information

Abstract: In a former work the author established an analog of a classical theorem of Painlevé in the context of an arbitrary resolutive compactification of a Riemann surface. In the same setting, a refinement of the argument used in the above yields an elementary proof of a theorem of Riesz-Luzin-Privaloff type: If a meromorphic function $ f$ tends to zero at each point of a subset $ E$ of the ideal boundary and $ E$ has positive harmonic measure, then $ f \equiv 0$ on $ R$. The well-known inclusion relations $ {U_{HB}} \subset {\mathcal{O}_{M{B^{\ast}}}}$ and $ {U_{HD}} \sim {\mathcal{O}_{M{D^{\ast}}}}$, are then established from the point of view of the resolutivity of the Wiener and Royden compactification respectively.

References [Enhancements On Off] (What's this?)

  • [1] C. Constantinescu and A. Cornea, Über den idealen Rand und einige seiner Anwendungen bei der Klassifikation der Riemannschen Flächen, Nagoya Math. J. 13 (1958), 169-233, MR 20 #3273. MR 0096791 (20:3273)
  • [2] -, Ideale Ränder Riemannscher Flächen, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Band 32, Springer-Verlag, Berlin, 1963. MR 28 #3151.
  • [3] Z. Kuramochi, On the ideal boundaries of abstract Riemann surfaces, Osaka Math. J. 10 (1958), 83-102. MR 20 #3272. MR 0096790 (20:3272)
  • [4] L. Sario and M. Nakai, Classification theory of Riemann surfaces, Die Grundlehren der math. Wissenschaften, Band 164, Springer-Verlag, New York and Berlin, 1970. MR 41 #8660. MR 0264064 (41:8660)
  • [5] J. L. Schiff, Harmonic null sets and the Painlevé theorem, Proc. Amer. Math. Soc. 43 (1974), 171-172. MR 0330447 (48:8784)

Additional Information

Keywords: Resolutive compactification, ideal boundary, meromorphic function, superharmonic function, harmonic measure
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society