Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Isometry groups of manifolds of negative curvature


Author: W. Byers
Journal: Proc. Amer. Math. Soc. 54 (1976), 281-285
DOI: https://doi.org/10.1090/S0002-9939-1976-0390960-6
MathSciNet review: 0390960
Full-text PDF

Abstract | References | Additional Information

Abstract: Solvable subgroups of the isometry groups of a simply-connected manifold of negative curvature are characterized and this characterization is used to show that the isometry group of the universal Riemannian covering of a compact manifold of negative curvature is either discrete or semisimple.


References [Enhancements On Off] (What's this?)

  • [1] V. I. Arnol'd and A. Avez, Problèmes ergodiques de la mécanique classique, Monographies Internat. Math. Modernes, no. 9, Gauthier-Villars, Paris, 1967; English transl., Benjamin, New York, 1968. MR 35 #334; 38 #1233. MR 0209436 (35:334)
  • [2] R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49. MR 40 #4891. MR 0251664 (40:4891)
  • [3] P. Eberlein and B. O'Neill, Visibility manifolds, Pacific J. Math. 46 (1973), 45-109. MR 0336648 (49:1421)
  • [4] D. Gromoll and J. A. Wolf, Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature, Bull. Amer. Math. Soc. 77 (1971), 545-552. MR 43 #6841. MR 0281122 (43:6841)
  • [5] S. Helgason, Differential geometry and symmetric spaces, Pure and Appl. Math., vol. 12, Academic Press, New York, 1962. MR 26 #2986. MR 0145455 (26:2986)
  • [6] A. Preissmann, Quelques propriétés globales des espaces de Riemann, Comment. Math. Helv. 15 (1943), 175-216. MR 6, 20. MR 0010459 (6:20g)
  • [7] S.-T. Yau, On the fundamental group of compact manifolds of non-positive curvature, Ann. of Math. (2) 93 (1971), 579-585. MR 44 #956. MR 0283726 (44:956)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0390960-6
Keywords: Riemannian manifold, negative curvature, isometry group
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society