Duality and EilenbergMac Lane spectra
Author:
T. Y. Lin
Journal:
Proc. Amer. Math. Soc. 56 (1976), 291299
MSC:
Primary 55E10
MathSciNet review:
0402738
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Stable cohomotopy groups of EilenbergMac Lane spectra of finite groups are shown to be trivial. This implies that the stable homotopy category, which is large enough to represent ordinary cohomology theory, cannot be selfdual. It can also be interpreted as an evidence to support Freyd's generating hypothesis and a proof of a stable version of a conjecture of D. Sullivan.
 [1]
J.
Frank Adams, Stable homotopy theory, Lectures delivered at the
University of California at Berkeley, vol. 1961, SpringerVerlag,
BerlinGöttingenHeidelbergNew York, 1964. MR 0185597
(32 #3061)
 [2]
J.
F. Adams and H.
R. Margolis, Modules over the Steenrod algebra, Topology
10 (1971), 271–282. MR 0294450
(45 #3520)
 [3]
J. F. Adams, Stable homotopy and generalized homology, Mathematics Lecture Notes, Univ. of Chicago, 1971.
 [4]
J. Boardman, Stable homotopy theory, mimeograph notes, Univ. of Warwick, Coventry, England, 1965.
 [5]
J.
M. Boardman, Stable homotopy theory is not
selfdual, Proc. Amer. Math. Soc. 26 (1970), 369–370. MR 0268887
(42 #3784), http://dx.doi.org/10.1090/S00029939197002688874
 [6]
B.
Eckmann and P.
J. Hilton, Exact couples in an abelian category, J. Algebra
3 (1966), 38–87. MR 0191937
(33 #164)
 [7]
Peter
Freyd, Stable homotopy, Proc. Conf. Categorical Algebra (La
Jolla, Calif., 1965) Springer, New York, 1966, pp. 121–172. MR 0211399
(35 #2280)
 [8]
Peter
Hilton, Homotopy theory and duality, Gordon and Breach Science
Publishers, New YorkLondonParis, 1965. MR 0198466
(33 #6624)
 [9]
John
C. Moore and Franklin
P. Peterson, Nearly Frobenius algebras, Poincaré algebras
and their modules, J. Pure Appl. Algebra 3 (1973),
83–93. MR
0335572 (49 #353)
 [10]
Goro
Nishida, The nilpotency of elements of the stable homotopy groups
of spheres, J. Math. Soc. Japan 25 (1973),
707–732. MR 0341485
(49 #6236)
 [11]
N.
E. Steenrod, Cohomology operations, Lectures by N. E. STeenrod
written and revised by D. B. A. Epstein. Annals of Mathematics Studies, No.
50, Princeton University Press, Princeton, N.J., 1962. MR 0145525
(26 #3056)
 [1]
 J. F. Adams, Stable homotopy theory, SpringerVerlag, Berlin and New York, 1964. MR 32 #3061. MR 0185597 (32:3061)
 [2]
 J. F. Adams and H. R. Margolis, Modules over the Steenrod algebra, Topology 10 (1971), 271282. MR 45 #3520. MR 0294450 (45:3520)
 [3]
 J. F. Adams, Stable homotopy and generalized homology, Mathematics Lecture Notes, Univ. of Chicago, 1971.
 [4]
 J. Boardman, Stable homotopy theory, mimeograph notes, Univ. of Warwick, Coventry, England, 1965.
 [5]
 , Stable homotopy theory is not selfdual, Proc. Amer. Math. Soc. 26 (1970), 369370. MR 42 #3784. MR 0268887 (42:3784)
 [6]
 B. Eckmann and P J. Hilton, Exact couples in an abelian category, J. Algebra 3 (1966), 3887. MR 33 #164. MR 0191937 (33:164)
 [7]
 P. Freyd, Stable homotopy, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), Springer, New York, 1965, pp. 121172. MR 35 #2280. MR 0211399 (35:2280)
 [8]
 P. J. Hilton, Homotopy theory and duality, Gordon and Breach, New York and London, 1965. MR 33 #6624. MR 0198466 (33:6624)
 [9]
 J. Moore and F. Peterson, Nearly Frobenius algebra, Poincaré algebra and their modules, J. Pure Appl. Algebra 3 (1973), 8393. MR 0335572 (49:353)
 [10]
 G. Nishida, The nilpotent of elements of the stable homotopy groups of spheres, 1973 (preprint). MR 0341485 (49:6236)
 [11]
 N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Ann. of Math. Studies, no. 50, Princeton Univ. Press, Princeton, N. J., 1962. MR 26 #3056. MR 0145525 (26:3056)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
55E10
Retrieve articles in all journals
with MSC:
55E10
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939197604027385
PII:
S 00029939(1976)04027385
Keywords:
Stable homotopy category,
SpanierWhitehead duality,
Freyd's generating hypothesis,
EilenbergMac Lane spectrum,
Moore spectrum,
Adams spectral sequence
Article copyright:
© Copyright 1976
American Mathematical Society
