Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ K\sb{i}$ of upper triangular matrix rings


Authors: R. Keith Dennis and Susan C. Geller
Journal: Proc. Amer. Math. Soc. 56 (1976), 73-78
MSC: Primary 18F25
DOI: https://doi.org/10.1090/S0002-9939-1976-0404392-5
MathSciNet review: 0404392
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Standard techniques are used to compute $ {K_i}(i = 0,1,2)$ of generalized triangular matrix rings.


References [Enhancements On Off] (What's this?)

  • [B] H. Bass, Algebraic $ K$-theory, Benjamin, New York and Amsterdam, 1968. MR 40 #2736. MR 0249491 (40:2736)
  • [D-S1] R. K. Dennis and M. R. Stein, The functor $ {K_2}$: A survey of computations and problems, Lecture Notes in Math., vol. 342, Springer-Verlag, Berlin and New York, 1973, pp. 243-280. MR 0354815 (50:7292)
  • [D-S2] -, $ {K_2}$ of discrete valuation rings, Advances in Math. 18 (1975), 182-238. MR 0437620 (55:10544)
  • [Mi] J. Milnor, Introduction to algebraic $ K$-theory, Ann. of Math. Studies, no. 72, Princeton Univ. Press, Princeton, N.J., 1971. MR 0349811 (50:2304)
  • [ST] M. R. Stein, Surjective stability in dimension 0 for $ {K_2}$ and related functors, Trans. Amer. Math. Soc. 178 (1973), 165-191. MR 48 #6267. MR 0327925 (48:6267)
  • [S-D] M. R. Stein and R. K. Dennis, $ {K_2}$ of radical ideals and semi-local rings revisited, Lecture Notes in Math., vol. 342, Springer-Verlag, Berlin and New York, 1973, pp. 281-303. MR 0406998 (53:10782)
  • [Sw] R. G. Swan, Excision in algebraic $ K$-theory, J. Pure Appl. Algebra 1 (1971), 221-252. MR 46 #7354. MR 0308240 (46:7354)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 18F25

Retrieve articles in all journals with MSC: 18F25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0404392-5
Keywords: $ {K_2},{K_1},{K_0}$, algebraic $ K$-theory, triangular matrix rings
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society