Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The logarithmic center of a planar region

Author: Douglas Hensley
Journal: Proc. Amer. Math. Soc. 57 (1976), 266-270
MSC: Primary 31A10
MathSciNet review: 0407291
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a bounded region $ S$ in the complex plane, let $ f(\beta ) = {\smallint _S}\log \vert z - \beta \vert d$ area for $ \beta $ any complex number. A logarithmic center of $ S$ is an $ \alpha $ which minimizes $ f(\beta )$. When is $ \alpha $ unique?

Conjecture. If $ S$ is convex then $ \alpha $ is unique.

Theorem. If $ S$ is convex and symmetric about some line, then $ \alpha $ is unique.

References [Enhancements On Off] (What's this?)

  • [1] D. Hensley, An asymptotic inequality concerning primes in contours for the case of quadratic number fields, Acta Arith. 28 (1976), 69-79. MR 0382196 (52:3084)
  • [2] I. P. Kubilius, The distribution of Gaussian primes in sectors and contours, Leningrad. Gos. Univ. Uč. Zap. 137 Ser. Mat. Nauk 19 (1950), 40-52. (Russian) MR 18, 113. MR 0079610 (18:113d)
  • [3] M. Morse and S. S. Cairns, Critical point theory in global analysis and differential topology: An introduction, Pure and Appl. Math., vol. 33, Academic Press, New York and London, 1969, p. 65. MR 39 #6358. MR 0245046 (39:6358)
  • [4] Tibor Radò, Subharmonic functions, Springer, Berlin, 1937. MR 0344979 (49:9718)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 31A10

Retrieve articles in all journals with MSC: 31A10

Additional Information

Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society