Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The Levi form and local complex foliations

Author: Michael Freeman
Journal: Proc. Amer. Math. Soc. 57 (1976), 369-370
MSC: Primary 32F99
MathSciNet review: 0409899
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A short coordinate-free proof is given for some known results on the existence of local complex-analytic foliations of a real submanifold $ M$ of $ {{\mathbf{C}}^n}$. The proof uses an explicit formulation of the equivalence between two definitions of the E. E. Levi form of $ M$.

References [Enhancements On Off] (What's this?)

  • [1] G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Ann. of Math. Studies, no. 75, Princeton Univ. Press, Princeton, N. J., 1972. MR 0461588 (57:1573)
  • [2] M. Freeman, Local complex foliation of real submanifolds, Math. Ann. 209 (1974), 1-30. MR 49 #10911. MR 0346185 (49:10911)
  • [3] P. Kraut, Zu einem Satz von F. Sommer über eine komplex-analytische Blätterung reeller Hyperflächen im $ {{\mathbf{C}}^n}$, Math. Ann. 174 (1967), 305-310. MR 36 #4022. MR 0220970 (36:4022)
  • [4] F. Sommer, Komplex-analytische Blätterung reeller Mannigfaltigkeiten im $ {{\mathbf{C}}^n}$, Math. Ann. 136 (1958), 111-133. MR 21 #730. MR 0101924 (21:730)
  • [5] R. O. Wells, Jr., Function theory on differentiable manifolds, Contributions to Analysis, Academic Press, New York, 1974, pp. 407-441.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32F99

Retrieve articles in all journals with MSC: 32F99

Additional Information

Keywords: Levi form, complex tangent, local complex foliation
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society