Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Homology of regular coverings of spun CW pairs with applications to knot theory


Author: W. L. Motter
Journal: Proc. Amer. Math. Soc. 58 (1976), 331-338
MSC: Primary 57C45
DOI: https://doi.org/10.1090/S0002-9939-1976-0407852-6
MathSciNet review: 0407852
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The $ p$-spin of a pair of CW complexes, one a subcomplex of the other, is defined. The algebraic properties of certain tensor-product chain complexes are used to calculate the homology groups of regular coverings of such spun pairs where these groups are considered as modules over the integral group ring of the group of covering transformations. In §4, by using the free differential calculus and ``geometric presentations'' for fundamental groups, presentations for certain homology groups are developed. In §§5 and 6 these results are used to analyze the homology and associated invariants for coverings of complements of higher-dimensional knots and torus-like embeddings in the sphere obtained by $ p$-spinning.


References [Enhancements On Off] (What's this?)

  • [1] J. J. Andrews and S. J. Lomonaco, Jr., The second homotopy group of spun $ 2$-spheres in $ 4$-space, Ann. of Math. (2) 90 (1969), 199-204. MR 40 #3547. MR 0250308 (40:3547)
  • [2] J. J. Andrews and D. W. Sumners, On higher-dimensional fibered knots, Trans. Amer. Math. Soc. 153 (1971), 415-426. MR 42 #6808. MR 0271927 (42:6808)
  • [3] E. Artin, Zur Isotopic zweidimensionaler Fläachen in $ R_4^ \ast $, Abh. Math. Sem. Univ. Hamburg 4 (1926), 174-177.
  • [4] S. Cappel, Superspinning and knot complements, Topology of Manifolds (Proc. Inst. Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 358-383. MR 43 #2711. MR 0276972 (43:2711)
  • [5] D. B. A. Epstein, Linking spheres, Proc. Cambridge Philos. Soc. 56 (1960), 215-219. MR 22 #8514. MR 0117740 (22:8514)
  • [6] R. H. Fox, Free differential calculus. I. Derivation in the group ring, Ann. of Math. (2) 57 (1953), 547-560; II. The isomorphism problem of groups, Ann. of Math. (2) 59 (1954), 196-210; III. Subgroups, Ann. of Math. (2) 64 (1956), 407-414. MR 14, 843; 15, 931; 20 #2374.
  • [7] C. Mc A. Gordon, Some higher-dimensional knots with the same homotopy groups, Quart. J. Math. Oxford Ser. (2) 24 (1973), 411-422. MR 48 #5089. MR 0326746 (48:5089)
  • [8] M. Kervaire, Les noeds de dimensions supérieures, Bull. Soc. Math. France 93 (1965), 225-271. MR 32 #6479. MR 0189052 (32:6479)
  • [9] Jerome Levine, Polynomial invariants of knots of codimension two, Ann. of Math. (2) 84 (1966), 537-554. MR 34 #808. MR 0200922 (34:808)
  • [10] S. J. Lomonaco, Jr., The second homotopy group of a spun knot, Topology 8 (1969), 95-98. MR 38 #6594. MR 0238318 (38:6594)
  • [11] A. T. Lundell and S. Weingram, Topology of CW complexes, Van Nostrand Reinhold, New York, 1969.
  • [12] W. S. Massey, On the normal bundle of a sphere imbedded in Euclidean space, Proc. Amer. Math. Soc. 10 (1959), 959-964. MR 22 #237. MR 0109351 (22:237)
  • [13] W. A. McCallum, The higher homotopy groups of $ k$-spun knots and links, Ph.D. Thesis, Florida State Univ., Tallahassee, Fla., 1973.
  • [14] W. L. Motter, Smooth embeddings of $ {S^p} \times {S^q}$ in $ {S^{p + q + 2}}$, Ph.D. Thesis, Florida State Univ., Tallahassee. Fla., 1973.
  • [15] K. Reidemeister, Complexes and homotopy chains, Bull. Amer. Math. Soc. 56 (1950), 297-307. MR 12, 120. MR 0036506 (12:120b)
  • [16] Y. Shionohara and D. W. Sumners, Homology invariants of cyclic coverings with applications to links, Trans. Amer. Math. Soc. 163 (1972), 101-121. MR 0284999 (44:2223)
  • [17] E. H. Spanier, Algebriac topology, McGraw-Hill, New York, 1966. MR 35 # 1007. MR 0210112 (35:1007)
  • [18] D. W. Sumners, The effect of spinning and twist-spinning on some knot invariants, Florida State University (preprint).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57C45

Retrieve articles in all journals with MSC: 57C45


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0407852-6
Keywords: CW complexes, spun CW pairs, regular coverings, homology of product complexes, free differential calculus, presentations for homology groups, spun knots, polynomial invariants, fibered embeddings
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society